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CHAPTER 1. INTRODUCTION

For the past few decades, both the scientific community and the general public have been

becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all

of these asteroids and comets, known or unknown, that cross Earth’s orbit as near-Earth objects

(NEOs). A cursory look at our geologic history tells us that NEOs have collided with Earth in

the past, and we expect that they will continue to do so. On average, our scientific community

estimates that a near-Earth object with a diameter of up to 100 meters would impact the

Earth once every one hundred to one thousand years [2], a notable example of which is the

impact at Tunguska in 1908. Even an impact of this size would cause catastrophic damage if

it occurred over an urban area. A similar fireball event occurring in the New York City metro

area could result in up to 10 million casualties [3]. Fears of this possibility are heightened by

the explosion of a small NEO (approximately 20 meters in diameter) over Chelyabinsk, Russia

on February 15, 2013. This event released approximately 440 kilotons of energy in the upper

atmosphere [4], injuring over 1000 people. Additionally, though the population of catastrophic

impactors has been well surveyed, it is estimated that thousands of bodies over 140 meters in

diameter remain undiscovered. It is estimated that the most likely NEO threat are airburst

events due to asteroids on the lower end of this spectrum, formally considered too small to

survive atmospheric entry [5]. Impacts of NEOs with diameters over 1 km are less probable,

but even bodies at the lower end of this category would cause a global catastrophe resulting

in near extinction of the human population. A 10-km asteroid is suspected to have resulted

in the extinction of over half of the species on Earth late in the Cretaceous period 65 million

years ago.
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1.1 Mitigation Options

With thousands of known NEOs crossing the orbit of Earth, and almost 1400 of these

considered potentially hazardous at this time [6], there has been significant scientific interest

in developing the capability to deflect an NEO from an impacting trajectory. With a large

number of such bodies crossing the orbit of Earth, the probability of a catastrophic impact is

large enough to warrant careful monitoring of hazardous NEOs and research into the possible

deflection of their orbit. For the last few decades, the scientific community has been actively

engaged in identification and characterization of hazardous NEOs [2]. Conventional wisdom,

and a substantial amount of planetary defense literature, has held that the best way to accom-

plish this goal is to slowly push the NEO onto another trajectory, or to use an impulsive force

(nuclear standoff explosion or kinetic impactor) at least a decade in advance of impact [7]. In

practice, deflection methods of sufficiently high energy density are preferred and need to be

prepared in advance of an expected impact date with the Earth [7, 8, 9, 10, 11].

1.1.1 Standoff Explosions

Past results for low-energy methods indicate that compression waves created from kinetic

impactors or incident radiation are not sufficient to fragment these NEOs, assuming they are

solid bodies. Recent characterization research, however, suggests that many of these bodies

have porous outer shells and that catastrophic fragmentation due to explosives is a reasonable

concern [12]. In fact, calculations of specific energy imparted from nuclear explosives have

been shown to exceed the gravitational binding energy of common NEOs, resulting in long-

term dispersion of fragments along the orbital trajectory [13]. One of the proposed literature

methods utilizes a nuclear explosion at a specified standoff distance from the target NEO to

cause its velocity change by ablating and blowing off a thin layer of the surface [7, 8, 14, 15,

16]. This thesis investigates a simple model that can be used to assess the effectiveness of a

nuclear standoff explosion approach. We use geometric principles and basic physics to construct

a baseline model. This approach can be augmented to account for icy bodies, anisotropic

ejecta distributions, and effects unique to the nuclear blast model. Possible fracturing of the
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asteroid and other anticipated outcomes of a nuclear blast are analyzed. Use of this simple

model has resulted in an estimation of NEO velocity change (∆V ) on the same order as other

complex models, and has correlated data for optimal standoff distance of about 200 m for

an ideal spherical model of a 1-km NEO. The standoff approach is further investigated from

a hydrodynamics standpoint as a method for disruption of so-called “rubble piles” or small

NEOs.

1.1.2 Subsurface and Surface Explosions

While these methods are intended to ablate a thin layer of material, the level of energy

imparted to the NEO makes fragmentation of the target a plausible outcome. The specific

energy added to the basaltic rock can approach or even exceed the energy needed for minimal

break up of a small NEO [12]. In other cases, thermal ablation of surface material causes

compression waves to propagate through the remainder of the NEO. The stress of these waves

may be enough to continue fracturing the material [17]. Another proposed mitigation method is

the use of nuclear explosive devices above, on, or beneath the surface of an NEO [18, 19] It has

been suggested that fracturing a body may be a beneficial outcome, as smaller pieces may burn

up in the atmosphere. However, even smaller pieces impacting the Earth can cause significant

damage [5, 20]. The lower threshold for material ablation in the atmosphere is undetermined,

and explosions in the atmosphere can be fatal and possibly catastrophic events.

A possible benefit of NEO fragmentation is to lower the number of small bodies impacting

the Earth in cases where some level of impact is inevitable. This could be either the result

of an unsuccessful deflection attempt or a backup measure when there is not enough time for

another deflection mission. Previous research has shown a reduction in impacting mass of up

to 80% through statistical methods [12]. Lead time, or warning time, has been suggested as

the most important factor in the effectiveness of catastrophically fragmenting a NEO [12, 17].

However, Dave Dearborn proposed a radical idea that with sufficient energy an object typically

considered catastrophic could be dispersed in as little as 10 days to impact [19, 13]. This proof

of concept was initially tested through hydrodynamic methods at Lawrence Livermore National

Laboratory.
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Two main motives drive research into high-energy, last minute options for asteroid deflec-

tion: a) Many bodies on impacting trajectories may not be detected early enough to spend

decades deflecting their orbits, and b) The expense and risk of an interplanetary mission to

deflect an NEO will require that an object be demonstrated to pose a substantial and imminent

threat before action is taken. While the late notice motive is becoming less relevant as more

NEOs are catalogued, there are still small bodies that are detected within weeks of closest

approach, or are even a complete surprise [4], and it would be hard to prove that no more such

bodies exist.

The “late decision” motive is a political and fiscal reality that planetary defense researchers

will have to consider. Even if a viable method of deflection is demonstrated and awaits de-

ployment, a potential target must be shown to impact the Earth considering all relevant un-

certainties. As the long-term ephemerides of a small body in the solar system contain many

uncertainties that could account for several Earth radii of displacement [13, 21], we expect that

a decision to deflect an NEO will come within the last few orbits before impact (possibly after

a close approach with the Earth alters the body trajectory). The asteroid 99942 Apophis is

one such example. Initially given a much higher probability of impact on April 13, 2036, the

current estimated probability of impact is 1 out of 250,000 after many additional observations.

There is still much uncertainty of what will happen after Apophis passes within 36,000 km of

the Earth on April 13, 2029 [22].

If a body like Apophis was forced into a resonant orbit after a close approach with the

Earth and was confirmed to be on an impacting trajectory, we would only have a short window

in which to act (7 years in the Apophis scenario). This has been shown to be problematic for

mission design, with reasonable launch windows only giving a few weeks of time for a deflection

to take place [23]. Modeling of atmospheric reentry for a fragmented body has suggested

that lowering the individual masses results in substantial reduction of ground impacts, with

many fragments burning up or being partially ablated by the atmosphere [24]. Therefore, it

is desired that any viable last-minute option lower the impacting mass below this threshold,

allowing the atmosphere to have an increased effect. For this reason, we investigate the timing

of NEO fragmentation and the scaling of initial explosive energy to model NEO disruption and
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determine a desired course of action in a late notice or late decision scenario.

This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO

disruption problem. A simulation package was designed that allows efficacy simulation to be

integrated into the mission planning and design process. This is done by applying ideas in high-

performance computing (HPC) on the computer graphics processing unit (GPU). Rather than

prove a concept through large standalone simulations on a supercomputer, a highly parallel

structure allows for flexible, target dependent questions to be resolved. Built around non-

classified data and analysis, this computer package will allow academic institutions to better

tackle the issue of NEO mitigation effectiveness.

1.1.3 Verification and Extension of Previous Work

Previous results in the targeted disruption of NEOs were conducted by David Dearborn of

Lawrence Livermore National Laboratory. Work completed at the Asteroid Deflection Research

Center at Iowa State University verified the orbital trajectory analysis of Dr. Dearborn. The

target of the hypothetical deflection mission ws an NEO approximately the size of the asteroid

Apophis. It has a total mass of 2.058E13 kg with a diameter of 270 meters, as shown in

Figure 1.1. It has a two-component (inhomogeneous) spherical structure with a high density

core consistent with granite (density = 2.63 g/cm3), and a lower density (1.91 g/cm3) mantle.

The bulk density of the structure was 1.99 g/cm3, close to that measured for asteroid Itokawa

(density = 1.95 g/cm3) [25]. A nuclear explosion was simulated in a region below the surface

of the body by sourcing in energy corresponding to 300 kT. The source region is cylindrical,

and the dimensions are 1 m in diameter and 5 m long. The energy source region expands,

creating a shock that propagates through the body resulting in fragmentation and dispersal.

The structure of the asteroid was modeled with a linear strength model, a core yield strength of

14.6 MPa, and a shear modulous of 35 MPa. The mass-averaged speed of the fragments after 6

seconds was near 50 m/s with peak near 30 m/s, as shown in Figure 1.2. A three-dimensional

fragment distribution was constructed from the hydrodynamics model by rotating the position,

speed, and mass of each zone to a randomly assigned azimuth about the axis of symmetry.

Figure 1.2 also shows the two-dimensional distribution of body fragments after the completion
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of the subsurface explosion simulation.

Figure 1.1 Structural Model of an Apophis-sized (270 m) Body.

Figure 1.2 Distribution of Fragments and Velocities for 300 kT Subsurface Explosion.

We now have a three-dimensional distribution of relative position and velocity for a reason-

able NEO fragmentation. To track the dispersion of these fragments along the orbital trajectory

before impact, the relative position axes were aligned such that the highest momentum pro-

jectiles coincided with the desired deflection direction at the time of the explosion. A velocity

scaling parameter allows the testing of distributions with fragment velocities different than the

predicted 50 m/s maximum velocity from the explosion simulation.
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1.2 Impacting Trajectory Analysis

In order to study a viable deflection mission, we must first have an orbit that can be

assumed to impact the Earth if no action is taken. Newtonian n-body system simulation is

simple in principle because it involves the integration of the ordinary differential equations

describing the n-body motions in a Newtonian gravitational field. However, it becomes a non-

trivial problem when a precise orbit prediction is required in the presence of various physical

modeling uncertainties. An example case (the AIAA fictional asteroid impact problem) will

be described in the next section to highlight this concern. A linearized least squares error

correction algorithm was used to develop a fictitious orbital trajectory of the asteroid Apophis,

precisely impacting the Earth on April 13, 2036. The estimated orbital parameters for the

asteroid Apophis following its encounter with the Earth in 2029 were used as an initial guess.

This numerical algorithm for the nonlinear shooting method proposed was shown to be superior

in computational efficiency to gradient-based line search methods or random walk methods for

this type of problem. The orbital analysis chapter will describe the search process for finding

orbital parameters that intersect the position of the Earth at the appointed time, as well as

the models used for successively higher fidelity simulation of fragment relative positions.

A fictional asteroid deflection problem was created by AIAA (American Institute of Aero-

nautics and Astronautics) in 2004 [21]. A similar fictional asteroid deflection problem, called

the Defined Threat (DEFT) scenarios, has been also created for the 2004 Planetary Defense

Conference. One of the four DEFT scenarios is about mitigating a fictional 200-m Athos as-

teroid with the predicted impact date of February 29, 2016. The fictional asteroid mitigation

problem of AIAA is briefly described as follows. On July 4, 2004, NASA/JPL’s Near Earth

Asteroid Tracking (NEAT) camera at the Maui Space Surveillance Site discovered a 200-m

diameter Apollo asteroid designated 2004WR. This asteroid has been assigned a Torino Impact

Scale rating of 9.0 on the basis of subsequent observations that indicate there is a 95% prob-

ability that 2004WR will impact the Earth. The expected impact will occur in the Southern

Hemisphere on January 14, 2015 causing catastrophic damage throughout the Pacific region.

The mission is to design a space system that can rendezvous with 2004WR in a timely manner,
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Table 1.1 Orbital Parameters for AIAA Impact Deflection Problem

Orbital Parameter Value

Semimajor Axis 2.15374076 AU

Eccentricity 0.649820926

Inclination 11.6660258 deg

Longitude of Right Ascension 114.4749665 deg

Argument of Perihelion 66.2021796 deg

Mean Anomaly 229.8987151 deg

Epoch 53200 MJD

inspect it, and remove the hazard to Earth by changing its orbit and/or destroying it. The

classical orbital elements of 2004WR are given in the J2000 heliocentric ecliptic reference frame

by the values in Table 1.1.

The STK 5.0.4 software package, with a 9th-order Runge-Kutta integrator with variable

step size and the planetary positions from JPL’s DE405, was known to have been used by AIAA

to create this set of orbital parameters of 2004WR. It is further assumed that 2004WR is an

S-class (stony-silicate) asteroid with a density of 2.720E3 kg/m3 and that its estimated mass

is 1.1E10 kg. If 2004WR is an M-class (nickel-iron) asteroid, then its estimated mass would be

2.2E10 kg.

An ideal Keplerian orbit simulation of 2004WR was performed first as a simple check of

this fictional problem in —citewie4. The result indicated that its closest approach to Earth

is about 0.035 AU, which is less than the Minimum Orbit Intersection Distance (MOID) of

0.05 AU of a Potentially Hazardous Object (PHO). It also had a close encounter with Mars

by 0.1 AU. After checking the ideal orbital characteristics of 2004WR, three different N-body

software packages were used to confirm 2004WR’s collision with Earth on January 14, 2015.

These software packages were: JPL’s Horizons, CODES, SSCT, and STK all utilizing JPL’s

DE405 ephemeris data for the planetary positions. Orbit simulation results of using these four

N-body simulators indicate that 2004WR actually misses Earth by 1.6 Earth Radii contrary to

an expected impact in the Southern Hemisphere on January 14, 2015. This example problem

will be further examined using the reference trajectory method developed in this work.
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Initial work in planetary deflection was focused mostly on prediction of relative impacting

mass, but disruption at different times along a given orbit can have a large effect on the resulting

shape of debris. The proposed approach looks at the fragmentation model to better address how

uncertainty in the NEO breakup affects orbital prediction, particularly in the case of variable

time-to-impact. This allows for a more clear set of objectives for mission design. Another new

result is the availability of representative 3D fragment distributions for non-spherical bodies.

This will improve the trajectory of the desired hypervelocity intercept mission by allowing full

degrees of freedom in choosing the approach asymptote.

1.3 Computational Approach

A bottleneck in determining appropriate mitigation methods for NEOs has been a lack of

experimental data on the efficacy of each approach, forcing reliance on simulations to determine

effectiveness. As we move from the concept stage into true mission planning for effective NEO

threat mitigation, we must depart from simulation of a few sample cases and instead use

mission parameters to integrate modeling and simulation into the design cycle. This thesis

presents the development of simulation tools designed to be implemented as part of the mission

design procedure for nuclear fragmentation and dispersion of an NEO. A brief history of GPU

computing will be given, followed by the particulars of high-level language access for this

simulation. Motivation for the parallelization of the presented model lies in each particle

relying only on information for its immediate neighbors. Improvements of the fragmentation

model are shown to result in 60% cost savings for the simulation and a large speedup compared

to serial CPU implementation. The adaptation of previously presented models to the memory

and compute capability of the GPU architecture will be described, as well as steps taken to

optimize performance in the presence of GPU limitations.

Past work showed that a large amount of data can be processed using GPU simulation.

This has allowed for a revolution in computing on a budget, allowing hundreds of complex

simulations to be tested. While new HPC technology is shown to solve old problems faster,

this work also addresses the identification of new problems that were previously intractable

without the use of a supercomputer or dedicated cluster.
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CHAPTER 2. PHYSICAL MODELING

This chapter presents the equations of motion and target model used in the fragmentation

simulations. For initial representation of the standoff model, a semi-analytical approach is

taken. For the axisymmetric 2D simulation work, two primary reference targets are used, to

emphasize the differences between material composition. Both were 100 meters in diameter, but

had different bulk densities and material strength properties. The first target is a rubble-pile

asteroid, with a bulk density of 1.91 g/cm3. This is a likely target for demonstrating the behav-

ior of more porous material. The second target is a single granite boulder with a bulk density

of 2.63 g/cm3. A linear model for material strength is used in this target with a yield strength

of 14.6 MPa and a shear modulus of 35 MPa, resulting in a more granulated fragmentation

and slower dispersion velocities. Real asteroid targets are expected to fall within these two

extremes, with variances for composition, distribution of mass, and orientation. A Smoothed

Particle Hydrodynamics (SPH) model is used for the asteroid fragmentation simulation under

3 initial conditions: a subsurface explosion of 100 kt buried at a 5 m depth, a surface blast of

100 kt surrounded by a 1 m thick aluminum impactor, and a standoff blast at 10 m above the

surface. We assumed an isotropic Weibull distribution of implicit flaws in the NEO material

and conducted Monte Carlo simulation to establish a mean response of the target NEO to the

fragmentation process for the initial model.

An asymmetric target was created to demonstrate the effectiveness of a two-body approach.

This Hypervelocity Asteroid Interception Vehicle (HAIV) concept by the Asteroid Deflection

Research Center is intended to overcome some of the technological challenges introduced by

attempting a subsurface explosion. Since rendezvous with a target is not generally an option

for short lead time [23], a spacecraft designed to seperate into two bodies is employed. The

first acts as a kinetic impactor at the relative velocity of 5 - 30 km/s. The second contains the
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explosive device, which detonates in the crater of the initial impact. This mimics the behavior

of a subsurface explosion by increasing the coupled energy, without requiring a velocity change

for the spacecraft.

2.1 Semianalytical Standoff Model

The precise outcome of a NEO deflection attempt using a nuclear standoff explosion is

dependent on myriad variables. Shape and composition of the target NEO are critical factors.

These critical properties, plus others, would need to be characterized, ideally by a separate mis-

sion, prior to a successful nuclear deflection attempt. A first-order model can be constructed by

assuming a spherical NEO of constant density. A simple representation is shown in Figure 2.1,

where R is the radius of the target NEO, h is the blast height above the surface, k is the ratio

of blast height to radius, and r is the straight-line distance from blast to surface. The distance

r can be expressed in terms of a function b, which is the ratio of the distance r to the radius

R (i.e., b = r/R). As illustrated in Figure 2.1, α is half the apex angle of the cone intercepting

the NEO surface, ψ is the complement of this angle, and is the incident angle of radiation from

the blast, measured from the vertical. The energy intensity on the surface is dependent on the

distance traveled. The distance r at any angle from the horizontal can be determined using

the law of cosines, as follows:

Figure 2.1 Basic geometry and area fraction dependence for standoff approach.
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r2 = b2R2 = R2
[
k2 + 2(k + 1)(1− cosψ)

]
(2.1)

The solid angle subtended by any cone with apex angle 2φ is given by 2π(1− cosφ) while

the total solid angle of a sphere is 4π. Therefore the fraction of blast energy intercepting the

surface, Ef , of the NEO and the fraction of the NEO surface irradiated, Sf , are determined by

their respective maximum angles, as follows:

Ef =
1

2
(1− cosφmax), Sf =

1

2
(1− cosψmax) (2.2)

where φmax and ψmax are defined for r tangential to the spherical surface. These relations

will be used to assess the importance of blast height and determine the energy coupling available

for any deflection attempt. It is apparent from Figure 2.1 that the amount of available energy

as well as the amount of surface irradiated is dependent on the precise blast height. The ratios

of area subtended on a unit sphere for each blast height are also shown in Figure 2.1. These

values are important in determining the energy density at any point on the NEO from the blast.

The equation for r describes the distance dependence on blast height. The angles φmax and

ψmax are also dependent upon the blast height and can be determined from the right triangle

in Figure 2.1 as

φmax = sin−1

(
1

1 + k

)
, ψmax = cos−1

(
1

1 + k

)
(2.3)

We then obtain the following relationships for energy and surface fractions:

Ef =
1

2

(
1−
√

2k + k2

1 + k

)
, Sf =

1

2

(
1− 1

1 + k

)
(2.4)

The energy densitys dependence on angle from the blast can be described using the pre-

vious equations. Figure 2.2 shows the relationships used to construct this dependence. Using

Figure 2.2, we obtain the fraction of energy present in a thin conical shell with angular width,

dφ, at an arbitrary value of φ as follows:

dE =
1

2
sinφdφ (2.5)
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Figure 2.2 Irradiation shell of angle dφ.

The impact area of this thin shell is also obtained as

dS =
2πydy

4πR2
=

1

4
b2 sin 2φdφ (2.6)

where b = r/R. As expressed earlier, b has a relationship to blast height as b2 = k2 + 2(1 +

k)(1− cosψ). The area energy density fraction is then described as

dE

dS
=

1

b2 cosφ
(2.7)

2.1.1 Blast Model

To assess the effects of different nuclear devices, we assume a modular approach in which

the blast model can be interchanged to produce alternate results. As a first step in this process,

a symmetric, booster-principle device is assumed. This nuclear device is modeled as a spherical

mass of thermonuclear material surrounded by concentric spheres of fissile material and other

components including shaped high explosives and detonation equipment. This model has the

benefit of isotropic energy distribution, but is limited in yield due to a constrained volume of

thermonuclear material [26].

Several basic fuels can be used in a thermonuclear device, among them combinations of

deuterium (D) and tritium (T). Both of these are heavy isotopes of hydrogen, with deuterium

having 2 nucleons and tritium having 3. The spherical configuration of our model makes it

difficult to consistently obtain the ignition temperature for the pure D-D reaction involving
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deuterium nuclei, while using a D-T reaction is problematic for systemic reasons [26]. A

compromise can be made, however, using a compound of lithium including deuterium, 6LiD.

This compound is solid at room temperature, and upon neutron bombardment creates tritium

nuclei to sustain a D-T reaction [15, 26, 27]. A thermonuclear device based on 6LiD requires a

constant flux of neutrons beyond what is made available in the surrounding fission reactions.

Therefore, the fuel is likely stored with a tamp material that breeds additional neutrons, such

as 238U (an isotope of uranium) or 9Be (an isotope of beryllium) [26, 27].

A modern nuclear bomb known as the B83, which is listed as weighing 1100 kg, has a yield

of around 1.2 MtTNT. A unit of tTNT is used to describe an energy yield equivalent to 1 ton of

TNT explosive, which has a standard value of 4.184× 109 J. Empirically, U.S. weapon masses

have been proportional to the 0.85 power of the effective yield [15]. Determining a yield for a

general weapon requires inverting this relationship. For the B83, an approximate formula for

radiative yield, Y (in units of J), in terms of the weapon mass, M (in units of kg), is given by

Y = 1.1× 1012M1.2 (2.8)

The components and equipment needed to detonate the nuclear device reduce the effective

yield to about 0.25 of the yield of an equivalent mass of fuel [28]. This difference in specific

energy can be used to find the fuel mass fraction, mf , as well as the resulting fractional mass

of debris, md. The values of mf = 0.25 and md = 0.75 derived in [7] are assumed here.

For the nuclear device described here, the fission reaction heats the thermonuclear material

well above its ionization temperature, so the fuel becomes plasma [27]. This process can give

an approximate value for the temperature, T = 1.2× 108, in degrees Kelvin based on a tenfold

increase in material density during the fusion process [26]. The speed of sound in plasma

dominated by blackbody radiation is the prevailing factor in a kinetic energy model of bomb

debris and the rate at which freed neutrons excite reactions [26, 27], and it is described by

cs =

√
4

3

aT 4

ρ2
(2.9)

where a is the radiation constant equal to 7.57 × 10−16Jm−3K−4. Assuming a tenfold
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increase in density, ρ2, to about 7800 kg/m3 [26], the speed of sound can be estimated as

cs ≈ 5.2 × 106 m/s. This calculated value is only slightly lower than the measured speed of a

thermonuclear detonation wave in 6LiD, so it provides a good estimate of the kinetic energy

delivered [26]. The model described in this paper assumes the thermonuclear detonation to be

an impulsive event, taking place instantaneously. Future models, however, may make use of

a significant quantity computed from the detonation wave speed known as the hydrodynamic

disassembly time. This is the time it takes for the energy of the detonation wave to blow

away any remaining fuel without ignition. For the value of cs computed, this is approximately

5 × 10−8 s [26]. If the fraction mf of the total mass is accelerated from rest to the speed cs,

the overall increase in kinetic energy K (in units of J) becomes

K =
1

2
mfMc2

s (2.10)

The neutron yield of a 1 MtTNT thermonuclear reaction is approximately 3 × 1026 neu-

trons [26]. At energies of 17.6 MeV each (2.82× 10−12 J), this results in a total neutron energy

release of 8.46 × 1014 J, just over 20% of the overall yield. The yield is computed from a

flux, and thus is proportional to the surface area of the fuel [26]. Changing the mass of the

weapon results in a change of fuel radius. Assuming the relationship described, we obtain a

corresponding value of neutron energy, N (in units of J), as a function of weapon mass, M (in

units of kg), as follows:

N = 8.8× 1012M0.67 (2.11)

The overall energy distribution from the detonation can be approximated by a blackbody

radiation curve [27]. We can assume bomb components and fissile material are opaque to

almost all wavelengths above the X-ray part of the electromagnetic spectrum [27]. The resulting

intensity of radiation in the X-ray part of the spectrum can be obtained by integrating Plancks

equation [29] between the limits of 30 PHz and 30 EHz. This corresponds to 99.8% of the total

radiative yield, while the remaining 0.2% is predominantly gamma rays [27]. In this paper, the
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distribution of blast energy is assumed as

Etotal = Ex-ray + Eγ + Eneutron = 0.998(Y −N) + 0.002(Y −N) +N (2.12)

2.2 HAIV System Targets

Initial demonstration of the two body HAIV concept used spherical spacecraft dummy

payloads to hit an inhomogeneous target with a diameter of 54 m. This method was directly

compared to a single explosion on contact with the surface. The current asymmetric target

consists of a contact binary system with a rubble pile exterior. With binary systems comprising

about 16% of the known NEA population [30], an impactor mission faces an approximately 1 in

6 chance that the target it approaches will be a binary system. This is a characteristic that will

be unable to be predicted ahead of time without radar observation, in the case of systems with

close secondaries. It has been suggested that many irregularly shaped asteroids with unusual

spin states could be contact binary (or multiple) systems. These types of systems would exhibit

some of the same characteristics as monolithic rocks and as rubble piles [31]. Further, those

asteroids identified as rubble piles could have large solid components beneath their regolith.

The two cores of the model system are elliptical, with major and minor axes of 50 and

30 meters, respectively. These cores are given material properties similar to granite using a

linear elastic-plastic strength model, and are canted by 45 degrees relative to the horizontal.

There is a vertical line of symmetry, so the cores are mirror images of one another. A rubble

regolith extends 2 meters in depth vertically above each core, and is packed along lines of

constant potential around the body, resulting in a maximum regolith depth of 14 meters. These

properties result in exterior dimensions of the target being approximately 76 x 42 meters, as

shown in Figure 2.3. The inner half of each core has an initial bulk density of 2630 kg/m3,

while the outer portion of the core is more porous material with an average bulk density of

1910 kg/m3. Both sections use values for yield strength between 7-203 MPa and shear modulus

between 8-22 MPa.

The initial impactor of the two-body spacecraft is an aluminum wedge 1 m in base diameter

and 1.5 m in length. The nuclear payload follows, depositing 70 kilotons of energy upon reaching
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Figure 2.3 Asymmetric Target for 2D Penetrated Explosive Modeling.

the initial impact site of the lead body. Most of this energy is absorbed in the crater region

formed by the initial impact, though deeper absorption is allowed due to the fact that much

of the material in this region has already been vaporized and superheated into a plasma state.

The resulting shock wave has a peak compression of more than 2 times the initial density, and

quickly overtakes the initial shock of the lead body impact, which is much weaker. This shock

compresses much of one core far beyond the fracture strength of even the worst case material,

rebounding off of the nearer side. This asymmetric behavior dissipates some energy due to

interactions with the rebounding shock front. In the center area of deeper regolith, the seeding

process naturally results in a much more porous material, absorbing energy from the shock.

Upon reaching the second core at the far side, some large chunks escape the disruption process

in some cases (even with lower material strengths).

In addition to the equations of motion used for the previous simulation, an extra dimen-

sion was added. This was to investigate the potential for sources of errors in 2D cylindrical

Smoothed Particle Hydrodynamics (SPH) codes, rather than an axisymmetric model. Other
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than in increase to the complexity of neighbor-finding calculations (as discussed later), no sig-

nificant increase in code complexity was required. This is due to the fact that the SPH model

equations are originally a 3D component/tensor formulation. Resulting coherent masses from

the fragmentation process were propagated through a model of solar system dynamics until the

predetermined date of impact. Masses remaining on impact trajectories undergo a simulation of

reentry into Earth’s atmosphere, resulting in final tallies of mass missing the Earth, fragments

on capture trajectories, airburst events, and impacts of reduced-mass fragments.

2.3 Hydrodynamic Equations

For the purposes of the present simulation study, a meshless hydrodynamics model was

desired. This approach would eliminate the need for storing and updating a grid, simplify

calculations for large deformations, and allow for contiguous memory access to local field prop-

erties. The SPH formulation [32, 33] was chosen to satisfy the first two goals, while the latter

will be discussed with regards to the GPU implementation. The core idea of SPH is to approx-

imate a field property f(x) by using a mollifier W (also known as an approximate identity)

with compact support:

〈f(x)〉 =

∫
Ω
f(s)W (x− s)ds, W ∈ C1

0 (Rn), Ω = supp(W ) (2.13)

where the brackets indicate the SPH approximation [33]], allowing the field variables to be

computed as a sum over the nearest neighbor particles representing the flow. In the present

formulation, W is taken as the cubic spline kernel [32, 33], with a variable isotropic domain of

support with radius h. Changing h in space and time allows for the simulation to respond to

changes in flow conditions with a change in local resolution [32, 33]. A massm is assigned to each

particle representative in the model, as well as initial position and velocity components (xβ and

vβ) in each β direction. Material properties such as density, ρ, and specific energy, e, complete

the state description. Similar to the above integral relationship, derivatives and integrals of

field functions can be approximated, resulting in the following set of equations [32, 33, 34]

involving the kernel derivative (a scalar valued function of vector position x):



www.manaraa.com

19

Dxαi
Dt

= vαi (2.14)

Dρi
Dt

=
N∑
j=1

mj

(
vβi − v

β
j

) ∂W (xj − xi)

∂xβ
(2.15)

Dvαi
Dt

= −
N∑
j=1

mj

(
σαβi
ρ2
i

+
σαβj
ρ2
j

+ Πij

)
∂W (xj − xi)

∂xβ
+ Fαi (2.16)

De

Dt
=

1

2

N∑
j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij

)(
vβi − v

β
j

) ∂W (xj − xi)

∂xβ
+

1

ρi
Sαβi εαβi +Hi (2.17)

where repeated indices in a product indicate implied summation over all possible values, σαβ

is the stress tensor, P is the pressure, Sαβ is the deviatoric (traceless) stress tensor, εαβ is

the local strain rate tensor, F represents external forces, and H represents energy sources.

Πij represents the Monaghan numerical viscosity [33, 35] used to resolve shocks, accommodate

heating along the shock, and resist unphysical material penetration. The material strength

model for the solid target uses an elastic-perfectly plastic description of strength [32, 33, 34],

where the hydrodynamic stress is determined as

σαβi = −Piδαβ + (1− η)Sαβi , η ∈ [0, 1] (2.18)

where η is a material damage indicator, to be discussed later. It should be noted that fully dam-

aged material (η = 1) is relieved of all stress due to deformation and behaves as a cohesionless

fluid [34, 36]. The rubble-pile target is treated in this manner by default. In this elastic-plastic

model, the components of the deviatoric stress tensor Sαβ evolve using the following equation

based on Hooke’s law [32, 37]:

DSαβi
Dt

= 2Gs

(
εαβi − 3δαβi εγγi

)
+ Sαγi Rβγi +Rαγi Sγβi (2.19)

whereRαβ is the local rotation rate tensor, Gs is the shear modulus, and the SPH approximation

for these terms is given by



www.manaraa.com

20

εαβi =
1

2

N∑
j=1

mj

ρj

[
(vαj − vαi )

∂W (xj − xi)

∂xβ
+ (vβj − v

β
i )
∂W (xj − xi)

∂xα

]
(2.20)

Rαβi =
1

2

N∑
j=1

mj

ρj

[
(vαj − vαi )

∂W (xj − xi)

∂xβ
− (vβj − v

β
i )
∂W (xj − xi)

∂xα

]
(2.21)

To complete this system, we use the following equations governing the change of support

radius h [32, 33], and the fracture damage ratio η [34]. The latter is limited in accordance with

the number of material flaws activated in the structure.

Dhi
Dt

= − 1

n

hi
ρi

Dρi
Dt

,
D

Dt
η1/3 =

cg
rs

(2.22)

where cg is the crack growth rate, here assumed to be 0.4 times the local sound speed [34],

and rs is the radius of the subvolume subject to tensile strain. In the present model, the latter

term is estimated by interpolation based on the strain rate tensor of neighbor particles. An

equation of state remains to complete the mechanical system. We use the Tillotson equation

of state [38] in the solid asteroid and in the aluminum penetrator used to deliver the surface

explosive, with the parameters listed in Table 2.1. This is modified to include porosity, and

an irreversible crush strength, for the “rubble pile” target [36, 39]. We assume a power law

distribution for number of implicit flaws in a volume of material with respect to local tensile

strain (a Weibull distribution), and assign flaws with specific activation thresholds to each SPH

particle [34]. The maximum damage allowed to accumulate in a volume is described by

ηmax
i =

(
ni
ntot
i

)1/3

, εi =
σti

(1− ηi)E
(2.23)

where ni is the number of active flaws (ε > εact) and ntot is the total number of flaws assigned

to a particle, which can vary widely, but is always at least one. Equation (11) also gives the

relationship for the local scalar strain, as a function of the maximum tensile stress σt, the local

damage, and the Youngs modulus E.
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Table 2.1 Parameters for Tillotson Equation of State in Core Material

Parameter Numerical Value Units
at 0.5
bt 1.5
At 7.1E10 Pa
Bt 7.5E10 Pa
αt 5
βt 5
E0 4.87E8 J/kg
Eiv 4.72E6 J/kg
Ecv 1.82E7 J/kg

2.3.1 Adaptive Smoothed Particle Hydrodynamics

Since the hypervelocity impact and explosive simulations rely heavily on energy transmission

through shocks, the current simulation framework uses Adaptive Smoothed Particle Hydrody-

namics (ASPH) to mitigate some of the computational and fidelity issues that arise in more

complex simulations. This approach is explained clearly by Owen et. al. [40], the implemented

details of which are repeated here. A concise explanation of the differences from “standard”

SPH can be found in [33]. SPH uses a kernel function that acts on a normalized position space.

This kernel, W (ν) is a function of the normalized distance ν = r/h, where r is the physical

distance vector, and h is the isotropic smoothing length. To add a direction sense to ellipsoidal

nodes, ASPH uses a symmetric, positive definite linear transformation G such that ν = Gr.

Then, the kernel derivative becomes:

∇W (η) = G
η

|η|
∂W

∂η
(2.24)

Given a matrix representation of the tensor G, the entries are evolved by:

DG

Dt
=
DR

Dt
G−Gσ (2.25)

where σij = ∂vi/∂xj is the deformation tensor. This can be easily obtained from the

strain rate tensor and rotation rate tensor used for the general SPH implementation. R is

an infinitesimal rotation of the smoothing kernel. It is well defined at the current time by

noting that it must be antisymmetric and that the resulting offdiagonal elements of DG/Dt
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must be symmetric. A description of a process to calculate these intermediate terms is given

in Reference [40].

A smoothing process for the tensor G is implemented after many time steps, as suggested

in [33]. This is done as a weighted average over the neighboring values to generate the new

smoothing tensor G′ by

G′ = |G| |gi| gi (2.26)

where

gi =

∑
j G
−1
j Wij∑
jWij

(2.27)

To mitigate spurious shear viscosity that is introduced by the artificial viscosity Πij , we

modify this visccosity calculation using the Balsara correction [41]:

Π̃ij =
1

2
(fi + fj)Πij (2.28)

where

fi =
|∇ · vi|

|∇ · vi|+ |∇ × vi|+ δci/hi
(2.29)

where c is the local sound speed and δ is a small number chosen to prevent divergence.

2.3.2 Tensor Damage Model

In the initial SPH model for comparison, the behavior of the core material under high stress

is governed by the activation of implicit flaws. These flaws are seeded in the representation

particles using a Weibull distribution with a coefficient of around 4.2E23 and an exponent

between 6.2-9.5. Using a range of distribution exponents and strength properties allows us

to examine the behavior of the core material with varying brittleness and material cohesion.

This turns out to be very important for this contact binary system, as strong core material

absorbs energy from the disruption shock and can result in large remaining chunks of material.

Smoothing lengths are chosen to allow for resolution of between 1 cm and 5 cm, which results
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in a hydrodynamic system of between 800,000 and 6,000,000 nodes. This system is scaled

to be an ideal size for the GPU simulation programs developed at the Iowa State Asteroid

Deflection Research Center (ADRC), maximizing both computational efficiency and simulation

turnaround time.

For this comparison, a damage model using a tensor variable was implemented. The details

are the same as those used in the Spheral code, developed by Mike Owen at the Lawrence

Livermore National Laboratory. We use a tensor damage variable defined per node Dαβ in

order to support directionality in the damage evolution. Cracks are allowed to open up in

response to strain aligned perpendicularly to that direction, there is substantially reduced

crack growth in orthogonal directions to the strain. The tensor strain, σαβ used is the “pseudo

plastic strain” of SolidSpheral, due to Mike Owen, which evolves in time as

Dσαβi
Dt

=
1

Gs

DSαβi
Dt

(2.30)

This is decomposed into a set of eigenvalues, σν , and eigenvectors, Λαν , from which the

directional scalar damage, ∆ν is the magnitude of the ν-th column of DαγΛγβ. The maximum

damage allowed to accumulate in a volume allowing for directionality, is:

Dmax = max

(
ni
ntot
i

,∆ν
i

)
(2.31)

where ni is the number of active flaws (ε > εact) and ntot is the total number of flaws assigned

to a particle, which can vary widely, but is always at least one. These directional damages can

then be time evolved using representative scalar evolution laws [34].

2.3.3 Neighbor Finding Implementation

One of the key limitations of the SPH simulation approach is that most proposed neighbor-

finding methods for interpolation rely on complex logic and lists not suitable for efficient GPU

implementation. Therefore, the addition of the third dimension makes this problem far more

complex. A new approach for efficiently computing unions and intersections of integer sets

on the GPU is proposed, allowing for neighbor-finding as an update process from previously
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computed relative relationships. Based on a standard Sort-and-Sweep approach in computer

graphics [42], the power of this approach lies in how it scales with increased number of SPH

interpolants. In addition to scaling superlinearly (compared to quadratic brute force calcula-

tions), the present approach uses the Thrust library to sort the position components of the

particles in parallel. This eliminates a series of memory transfers with the host and keeps all

data on the GPUs.

A subsequent group of GPU kernels establish pointers to the limits on the sorted array for

which candidate neighbor particles may belong. This reduces the neighbor finding to an integer

union calculation, which can be conducted as a logical (true/false) operation. Comparing the

position of the sorted particle IDs with the limits allows for a simple yes/no decision on whether

a proposed neighbor could be within the support of the interpolation function. Figure 2.4 gives

a depiction of this process for each computing thread. Figure 2.5 shows the improvements of

the present model over in-place neighbor calculations (also on the GPU). While dimensionality

affects the speed-up, there are still substantial gains made over past implementations.

Figure 2.4 Description of Sorted Neighbor Kernel Process.

2.4 Disruption Mission Profiles

This section outlines the initial conditions for three methods of NEO deflection using nuclear

explosive devices. For the initial demonstration cases, a 100 m diameter target asteroid is

modeled with an energy source of 100 kt. The newer, asymmetric, model uses an energy



www.manaraa.com

25

Figure 2.5 Neighbor Search Cost.

source equivalent to 70 kilotons. Thermal emission is omitted from the subsurface and surface

explosions due to absorbtion by surrounding material in the time scale of interest.

2.4.1 Subsurface Explosion Setup

Figure 2.6 Subsurface Explosion and Resulting Fragment Velocities.

For this simulation, the explosive is modeled as a cylindrical energy source buried at a

depth of 5 meters. As shown for the solid target in Figure 2.6, the blast wave compresses the

NEO, reducing it to fragments, and disperses it primarily along the axis of the explosion. The
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resulting fragment distribution for a case like this has a peak between 20-70 m/s, with a tail

of high-speed ejecta like that shown in Figure 2.6.

2.4.2 Surface Penetrator Model

Two main models for an explosion at the surface are used. One is a static explosion, which

results in vastly different systems depending on the composition of the body. For a solid target,

cratering and pitting is expected rather than disruption. Even dispersed rubble-pile asteroids

have a far lower mean fragment velocity than a similar subsurface system. The second model,

shown here, includes an aluminum penetrator impacting the surface at 6.1 km/s. The explosion

thermal energy turns the high-mass impactor into a plasma, which burrows into the surface as

it releases its energy. Slower dispersion velocity is observed than the subsurface case, but this

approach is extremely beneficial from an engineering standpoint, as there is strong coupling

between time-to-impact and a reduction in mission fuel cost [23]. The benefit to this method

relative to a subsurface explosion is that it does not require a rendezvous, and therefore there

are available launch windows for this type of mission right up until immediately before the

impact date.

2.4.3 Standoff Energy Deposition

Figure 2.7 Radial Energy Deposition and Total Deposition Region.
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For a standoff blast, additional physics must be considered. An energy deposition strategy

is required that does not directly compute X-ray and neutron scattering in the target. For

this, a ray-tracing algorithm is used with radial energy deposition at the surface as shown in

Figure 2.7 for neutrons. This is derived from a Monte Carlo scattering result from TART, a

DOE neutron deposition code, in NEO analog materials [16]. A 10% neutron yield is assumed

for these simulations, and a maximum deposition depth of 1.5 m to compare to deposition

predicted for chondritic materials [43]. The overall deposition region (shown as the logarithm

of deposited energy) is also shown in Figure 2.7. A modified SPH node representation is

created that resembles an ablative modeling grid used in high-energy deposition physics. This

distribution is shown in Figure 2.8, and has a minimum smoothing scale of 0.1 cm with a

maximum local change rate of 10% up to 0.2 m resolution. Also in Figure 2.8, the resulting

ablation provides an effect similar to that of a rocket, but also disrupts the rubble-pile target

completely.

Figure 2.8 SPH Nodes and Resulting Ablation for Standoff Model.

2.4.4 HAIV Concept

A slice of the nominal three-dimensional target was shown in Figure 2.3. As an increase in

computational burden, it performs moderately less efficiently than the two dimensional model.

The overall velocity statistics, which are the governing variables behind successful disruption,
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are similar to those for the cylindrical case. The histogram for radial dispersion velocities of

the fractured particles can be seen in Figure 2.9. There is a mean dispersion velocity for the

HAIV case of almost 350 m/s.

Figure 2.9 Radial Dispersion Velocity Histogram for HAIV Concept.

The travel of the explosive shock can be seen in Figure 2.10. This process dissipates some

energy due to interactions with the rebounding shock front. In the center area of deeper regolith,

the seeding process naturally results in a much more porous material, absorbing energy from

the shock. The new damage model allows for better tracking of crack propagation, such as

that shown in Figure 2.11. Upon reaching the second core at the far side, some large chunks

escape the disruption process in some cases (even with lower material strengths). A final

hydrodynamic state can be seen in Figure 2.12.

There remains a high risk for this target of single largest chunks on the order of tens of

meters. However, this material is highly stressed due to velocity gradients, and may be ripped

apart in further time. The large velocity graidents and the location of the slowest debris can

be observed in Figure 2.13. Further, these large chunks are still imparted substantial velocities

from the blast 10-20 m/s, and have sufficient energy to disperse from the nominal impacting

trajectory over tens of days.
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Figure 2.10 Asymmetric Shock Behavior.

Slower dispersion velocity is observed for the contact burst, as shown in Figure 2.14. The

mean dispersion velocity is only 150 m/s, which is 2x less effective than the baseline HAIV. In

terms of kinetic energy, the HAIV concept is superior by almost a factor of 10. It is clear that

this HAIV approach is also extremely beneficial from an engineering standpoint, as there is

strong coupling between time-to-impact and a reduction in mission fuel cost [23]. The benefit

to this method relative to a subsurface explosion is that it does not require a rendezvous, and

therefore there are available launch windows for this type of mission right up until immediately

before the impact date.
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Figure 2.11 Example Damage Localization for Tensor Fracture Model.

Figure 2.12 Final Disruption of NEO Target.
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Figure 2.13 Location of Slowest Moving Debris.

Figure 2.14 Radial Dispersion Velocity Histogram for Contact Burst.
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CHAPTER 3. TRAJECTORY ANALYSIS

This section describes the identification of nominal orbits for a fixed impact time. Given

a desired lead time, the optimal approach vector is computed using a differential step update,

described in the following subsections. The cost parameter is the impacting percentage of the

original target mass.

3.1 Impacting Orbit Solver

The orbital parameters for the nominal trajectory are sampled from a (a, e, i) space that

represents the distribution of known NEOs, as shown in Figure 3.1. This is done using inverse

transform sampling, in which a random number is mapped to the integral of the cumulative

density function for each of these three parameters. Given a, e, i, and the impact date, we

have all of the information needed to pin down an impacting orbit. If we assume that the orbit

passes through the center of the Earth, then we have xE , yE , and zE , which are the Cartesian

coordinates for the Earth’s center of mass at that epoch, which coincide with a point on the

desired orbit.

Given a, e, and r =
√
x2
E + y2

E + z2
E , the specific angular momentum is calculated as

h =
√
µa(1− e2) [52, 53]. Then, the true anomaly, θ and velocity magnitude, v, are calculated

using the orbit equation and the vis-viva equation:

r =
h2

µ

1

1 + e cos θ
;

v2

2
− µ

r
= − µ

2a
(3.1)

We can also calculate the radial velocity, vr, as

vr =
µ

h
e sin θ (3.2)
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Figure 3.1 Histograms of Known NEO Population.

which gives us all the needed scalars to solve the following set of nonlinear equations for the

velocity components vx, vy, and vz, resulting in the desired state vector:

f1(vx, vy, vz) = 0 = xvy − yvx − h cos i

f2(vx, vy, vz) = 0 = xvx + yvy + zvz − rvr (3.3)

f3(vx, vy, vz) = 0 =
√
v2
x + v2

y + v2
z − v



www.manaraa.com

34

3.1.1 An Adaptive Shooting Method for Reference Impacting Trajectories

To generate a reference impacting trajectory, a directed search among initial orbital pa-

rameters is needed. While implicit methods [54, 55] for a nonlinear shooting problem are very

robust, we desire the ability to dynamically generate reference trajectories independent of the

integrator used and without the need for tuning update parameters. A fundamental resolution

problem keeps many sets of orbital parameters from impacting the center of the Earth, even

if previous (similar) parameters were shown to impact using a different integrator or differ-

ent step sizes. This same resolution problem limits the efficacy of global searches based on

finite differencing. For this problem, estimated post-2029 orbital parameters for the asteroid

Apophis [22] were used as an initial guess for a directed search method.

Consider the vector function, f, which gives the position error of a chosen set of orbital

parameters for the asteroid Apophis on April 13, 2036 in a chosen coordinate system. Then,

we note that f has three components that can be related to Earth’s position:

f =


f1

f2

f3

 =


xa − xe

ya − ye

za − ze

 = ra − re (3.4)

If we consider a Taylor series expansion of f limited to first order terms, we can evaluate

the function at a new set of parameters, pn, which are close to the previous guess, pn−1, as

measured in six dimensional configuration space. The function f can then be viewed as a

projection of these parameters on position coordinates at the predetermined final time:

f(pn) = f(pn−1) +
1

2
J dp (3.5)

where J is the 3x6 matrix of partial derivates (commonly called the Jacobian) and dp =

pn−pn−1 is the vector difference of orbital parameters in the desired search direction. Assuming

the desired search direction has an error of 0, we propose a correction algorithm for determining

the search direction of the form:
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Table 3.1 Osculating Orbital Parameters for Fictitious Impact Trajectory

Orbital Parameter Value

Semimajor Axis 1.1082428 AU

Eccentricity 0.189928428

Inclination 2.18995362 deg

Longitude of Right Ascension 203.18642266 deg

Argument of Perihelion 69.929774 deg

Initial Mean Anomaly 296.74684241 deg

Epoch 64781 MJD

Miss Distance on Target Date 4.738466849E-011 Earth Radii

pn = pn−1 + kdp (3.6)

dp = −2J+f(pn−1)

where J+ = JT (JJT )−1 is the Moore-Penrose pseudoinverse of J, resulting in a least squares

solution to Equation (3.5) [56] when f(pn) = 0 and k is a scalar to be properly chosen for

robust convergence to an impacting trajectory. Exponential convergence of this method with

respect to an 11-body dynamical model is shown in Figure 3.2.

Figure 3.2 Convergence History of Error Function Norm for 11-body Model.
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Also visible from the scale of Figure 3.2 is the fact that the final set of orbital parameters

define a trajectory which impacts the Earth on the target date. The trajectory is designed to

pass through the center of the Earth to within the precision available. This allows the offset to

be eliminated as a cause for error when comparing the results of a fragmented body. Table 3.1

shows the initial osculating orbital parameters used for this simulation..

3.2 Fragmented System Estimation

Figure 3.3 Cumulative Density Functions for Disrupted Asteroid.

Figure 3.4 Rotating Local-Vertical-Local-Horizontal (LVLH) Frame.

Statistics representing the fragmented system are collected and stored as cumulative density

functions for the needed variables, similar to those shown in Figure 3.3. A representative
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fragment system of 10,000 to 100,000 fragments is created from these statistics using inverse

transform sampling. The debris cloud is given global coordinates in a Local-Vertical-Local-

Horizontal (LVLH) reference frame about the center of mass, as shown in Figure 3.4. Since

the hydrodynamic model is axisymmetric, and has a definite direction of maximum momentum

along the axis of symmetry, a desired deflection direction must be chosen. These are then

integrated to predict an ephemeris for a 48 hour period surrounding the nominal time of

impact. Since the LVLH reference frame is computationally beneficial for self-gravity and

collision modeling among fragments, we use the nonlinear relative equations of motion for this

frame to govern fragment trajectories [52, 53]:

ẍi = 2θ̇

(
ẏi −

ṙc
rc
yi

)
+ θ̇2xi +

µ

r2
c

− µ

r3
d

(rc + xi) +
µE
r3
Ei

(xE − xi) + F xi (3.7)

ÿi = −2θ̇

(
ẋi +

ṙc
rc
xi

)
+ θ̇2yi −

µ

r3
d

+
µE
r3
Ei

(yE − yi) + F yi (3.8)

z̈i = − µ
r3
d

zi +
µE
r3
Ei

(zE − zi) + F zi (3.9)

where x, y, z, rc, and θ are defined as shown in Figure 3.4, rd is the length of the relative

coordinate vector, µ and µE are gravitational parameters for the sun and the Earth, rEi is

the distance from each fragment to Earth, and (F x, F y, F z) are the combined acceleration

components due to 3rd body gravitational terms (solar system major body model, self gravity,

and collision corrections.

3.2.1 Gravity Model

Since the simulation is predominantly meshless, a temporary grid is created between the

minimum and maximum coordinate values in the LVLH frame. In the current model, the

fragments are regarded as spherical so the grid spacing is generally at least 2.0 times the

maximum particle radius. In most cases, the grid was allowed to be up to 20 times the particle

radius, as grid size determined the precision of self-gravity perturbations. Referring to the

two-dimensional grid in Figure 3.5, the colored grid cells adjacent to the grid containing the

current fragment of interest are the cells in which self-gravity has the form:



www.manaraa.com

38

Figure 3.5 Temporary Grid Creation and Evaluation.

(Fx)i =
∑
j

Gmj(xj − xi)
r3
ij

+
∑
k

Ak

(Fy)i =
∑
j

Gmj(yj − yi)
r3
ij

+
∑
k

Ak (3.10)

(Fz)i =
∑
j

Gmj(zj − zi)
r3
ij

+
∑
k

Ak

where G is the universal gravitational constant, mj is the mass of the gravitating body, rij is

the relative distance between each fragment and the gravitating body being considered, and

Ak are the cell averages for all nonadjacent cells. Outside of this region, an averaged fragment

containing the total mass contained within the cell is modeled at the centroid of the cell. Using

this method, the expense of the self-gravity calculation is reduced while retaining an aggregate

force for many small masses. Some methods for self-gravity neglect the force between bodies

if it is sufficiently small. However, this cutoff is not well defined, and a large number of

small fragments at a considerable distance produce an effect similar to a much larger body

at the average distance of these fragments. Therefore, it would substantially alter the system

dynamics to neglect this force rather than average it. The radius of cells in which self-gravity

is considered is a user set parameter for the present model, usually set between 1 and 3. A

block diagram of the process logic for a computing thread block containing fragment i is shown

in Figure 3.6.
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Figure 3.6 Block Diagram for Self-Gravity Process Logic (Contains Fragment i).

3.2.2 Collision Model

Collisions between bodies are a concern of any aggregation model. With a self-gravity

model attracting each fragment to all others, there must be a physically realistic way of limiting

the distance between two bodies that cannot occupy the same space. However, checking for

collisions through brute force can be as expensive as the self-gravity model. A model excluding

interacting pairs in adjacent cells is employed similar to that discussed in [42]. A Sort and

Sweep algorithm checks for colliding pairs along each coordinate, excluding fragments from

further consideration. When an overlapping pair of fragments are detected, they are backed up

along the normal connecting their centroids. An inelastic collision process with a coefficient of

restitution of 0.5 predicts the post-collision velocity, as shown in Figure 3.7.
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Table 3.2 Orbital Parameters for Planetary Ephemerides [1]

Planet a (au) e i (deg) Ω (deg) ω̃ (deg) L (deg)
Mercury 0.38709893 0.20563069 7.00487 48.33167 77.45645 252.25084

Venus 0.72333199 0.00677323 3.39471 76.68069 131.53298 181.97973
Earth 1.00000011 0.01671022 0.00005 -11.26064 102.94719 100.46435
Mars 1.52366231 0.09341233 1.85061 49.57854 336.04084 355.45332

Jupiter 5.20336301 0.04839266 1.30530 100.55615 14.75385 34.40438
Saturn 9.53707032 0.05415060 2.48446 113.71504 92.43194 49.94432
Uranus 19.19126393 0.04716771 0.76986 74.22988 170.96424 313.23218

Neptune 30.06896348 0.00858587 1.76917 131.72169 44.97135 304.88003
Pluto 39.48168677 0.24880766 17.14175 110.30347 224.06676 238.92881

Table 3.3 Parameter Rates for Planetary Ephemerides [1]

Planet ȧ (au/Cy) ė (1/Cy) i̇ (deg/Cy) Ω̇ (deg/Cy) ˙̃ω (deg/Cy) L̇ (deg/Cy)
Mercury 0.00000066 0.00002527 -23.51 -446.30 573.57 538101628.29

Venus 0.00000092 -0.00004938 -2.86 -996.89 -108.80 210664136.06
Earth -0.00000005 -0.00003804 -46.94 -18228.25 1198.28 129597740.63
Mars -0.00007221 0.00011902 -25.47 -1020.19 1560.78 68905103.78

Jupiter 0.00060737 -0.00012880 -4.15 1217.17 839.93 10925078.35
Saturn -0.00301530 -0.00036762 6.11 -1591.05 -1948.89 4401052.95
Uranus 0.00152025 -0.00019150 -2.09 -1681.4 1312.56 1542547.79

Neptune -0.00125196 0.00002514 -3.64 -151.25 -844.43 786449.21
Pluto -0.00076912 0.00006465 11.07 -37.33 -132.25 522747.90
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Figure 3.7 Collision Detection and Evaluation Process for Interacting Pair.

3.2.3 Planetary Orbit Models

In order to have a more accurate N-body integrator, we rely on planetary ephemeris data

to prepare relative position vectors between a fragment and a gravitating body. At a simple

level, this can be done by using classical orbital elements for each body at a given epoch, and

interpolating drift from this value based on a linear approximation to orbital element rates

of change. Table 3.2 shows the heliocentric orbital elements used to correspond to the J2000

epoch for the 8 major planets and the minor planet Pluto. These allow a linear approximation

of the current orbital parameters using the rate data from Table 3.3:

Q(t) = Q0 + Q̇T (3.11)

where Q is a particular orbital parameter, Q0 is its J2000 epoch value in Table 3.2, Q̇ is the

century rate of change found in Table 3.3, and T is the elapsed time since the J2000 epoch in

Julian centuries (36525 Julian days). Using the current value for these parameters, they can

be converted to include more common elements such as the argument of perihelion and mean

anomaly using the following relationships [52]:

ω = ω̃ − Ω (3.12)

M = L− ω̃

The classical orbital elements are then translated into position and velocity state vectors for

integration. Interpolation based on this scheme matched fragment position results using DE405
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Planetary Ephemerides to within 1 meter for the 15 day mission profile described in [13], and

therefore meet the goals of the present model with substantial computational reduction com-

pared to more costly systems. This system for planetary ephemerides will therefore allow the

present model to validate previous dispersion models including mutual gravitational accelera-

tion terms among fragments. Application of a simulation system using DE405 ephemerides is

currently underway for longer baseline scenarios such as the AIAA fictional impactor problem.

3.3 Earth Rotation Model

The present model of Earth’s rotation is based on fixing a vector to the equator of a spherical

Earth approximation at the Greenwich meridian. Orientation of this vector with respect to

the Earth Centered Inertial (ECI) coordinate frame is obtained using Greenwich Sidereal Time

(GST) [52]:

θ0 = 100.4606184 + 3600.77004T + 0.000387933T 2 − 0.00000002583T 3 (3.13)

θgst = θ0 +
360.98564724

24
tUT

where θgst represents the angle between the Greenwich Meridian and the line of vernal equinox

(The X coordinate of the ECI system) in degrees, θ0 is the local sidereal time at 0 hr UT of

the current day, and tUT is the current UT in hours.

3.3.1 A Direct Mapping to Earth-Fixed Coordinates

In addition to the transformation of position coordinates provided by the previous Earth

rotation model, we desire a coordinate relationship between the integrated fragment state

vectors in heliocentric coordinates and their counterparts in the ECI system, which is not truly

inertial but is in fact subject to acceleration in its orbit around the sun. The Earth-relative
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position vectors for each fragment, rrel, are easily found as:

rrel = r− rE =


xi − xE

yi − yE

zi − zE

 (3.14)

where r is a position vector describing each fragment, and the position vector for Earth, rE ,

is found using the interpolated ephemeris data for Earth orbit on the time step prior to im-

pact. Similarly, the relative velocity to the ECI frame, vrel, is found using the relative velocity

relationship to Earth’s heliocentric velocity, vE . This can also be found by differentiating Equa-

tion 3.14 and substituting Earth’s orbital angular momentum for the coordinate rotation [52]:

vrel = v− vE −
1

r2
E

(rE × vE)× rrel (3.15)

In these relative motion equations, all components are still expressed in ecliptic coordinates.

Since the ECI shares the vernal equinox as a common basis vector, we can transform components

using a simple rotation around the X axis through an angle −ε:

rECI =


1 0 0

0 cos(ε) −sin(ε)

0 sin(ε) cos(ε)

 rrel (3.16)

where ε is an angle measuring the mean obliquity of the ecliptic plane, computed in degrees

using [53]:

ε = 23.439291− 0.130042T − 0.000000164T 2 + 0.000000504T 3 (3.17)

Therefore, following a relative transformation of fragment position and velocity compared to

the Earth and a rotation of the fundamental plane of our coordinate system, we arrive at com-

ponents in the ECI system. The final integration of the simulation reentry model is conducted

in this system, resolving impact locations using an embedded model of Earth rotation.
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Table 3.4 Coefficients for Static Atmosphere Model

Layer ρ0 kg/m3 a1 km-1 a2 km-2 a3 km

0 ≤ ha < 20 1.2280 0.090764 -0.20452E-2 0

20 ≤ ha < 60 0.09013 0.16739 0.62669E-3 20

60 ≤ ha < 100 0.3104E-3 0.137 -0.78653E-3 60

100 ≤ ha < 120 0.366E-6 0.18533 0.15397E-2 100

120 ≤ ha 9.80665 -18.65220 (km-1/2) 0.6124000 (km-1/2) 116.4154 km

3.4 Fragment Reentry Model

For an initial guess, fragment impact locations on the surface are computed using a ballistic

case neglecting atmosphere. A cross-range and down-range error ellipse is appended to the

hit location to provide a confidence area of probable impact. This allows for uncertainty in

the reentry model due to drag forces. A secondary impact model was constructed using an

exponential falloff of density with height, based on a static Russian GOST atmosphere [53]

with coefficients listed in Table 3.4. A static night-time atmosphere neglecting solar effects is

assumed for altitudes above 120 km. Exospheric coefficients are chosen for a solar flux value of

F0 = 150:

ρ = ρ0 exp(−a1(ha − a3) + a2(ha − a3)2), ha < 120

ρ = ρ0 exp(a1 − a2

√
ha − a3), ha ≥ 120 (3.18)

where ρ0 is the mean density at the previous interface, and ha is the altitude above sea level in

kilometers. This density is then used to add a drag term to the velocity equation of motion [57]:

v̇ = v̇ECI −
ρ(v · v)SCd

2mi
êv (3.19)

where Cd is the ballistic drag coefficient for the fragment, and S is the area subject to the

leading bow shock, which is a function dependent on mass of the individual fragment, and êv is

a unit vector in the direction of the fragment velocity. The structure model used for reentry of

fragments is a cylinder inscribed in a cubic volume (diameter equal to height). The equivalent
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drag coefficient used was 1.7, as provided in [57, 24]. Deceleration due to air density is only

one component of reentry. Pressure stress and mass loss due to ablation are modeled using

material parameters:

ṁ = −S
Q

min

(
1

2
CHρv

3, σT 4

)
(3.20)

where Q is the heat of ablation (assumed to be 1E7 J/m3), CH is the coefficient of heat transfer

(assumed constant at 0.1), σ is the Stefan-Boltzmann constant, and T is the temperature of

thermal ionization of the surrounding gas (25,000 K). This equation governs the ablative mass

loss until the mean pressure in the cylinder p = 0.25Cdρv
2 exceeds the yield strength of the

material, at which point the energy deposition implies burnup of the fragment.

3.5 Uncertainty Analysis

In order to test the response of orbital dispersion with respect to uncertain initial fragment

positions and velocities, a Gaussian noise is added to the mapping around the nominal center of

mass. A standard deviation of 10% is assumed, resulting in deviations from the hydrodynamic

simulations up to ± 30%. For a given orbit, 1000 random perturbations are integrated to

impact, resulting in an average system behavior and a standard deviation representative of the

uncertainty due to the initial conditions.

This procedure is completed for a database of 906 orbits chosen to impact at a fixed date.

The orbital parameters for the nominal trajectory are sampled from a (a, e, i) space that rep-

resents the distribution of known NEOs, as shown in Figure 3.1. For each chosen deflection

direction, the Monte Carlo procedure described above results in a characteristic behavior of a

disrupted NEO on the range of orbits tested.

Given a fixed lead time in which to allow the fragmented target to disperse along its orbit,

or even a minimal desired lead time, we have a point (or set) at which a desired intercept is

achieved. It is clear, however, that not all approach vectors are equal. From a mission design

perspective, the approach asymptote affects the transfer orbit, and therefore the cost (or even

feasibility) of the mission [23]. For the present study, bounds on the approach asymptote from
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a mission perspective are not considered. Rather, the direction in which the approach occurs

is a deciding factor in the behavior of the fragmenting body.

A simple differential optimization routine is applied to this vector for each of the sampled

impacting orbits. There are two degrees of freedom for each of these problems. The optimal

pointing direction will be something of interest in short warning scenarios, since a drastic

difference in the dispersion patterns can occur. For some of the orbits, a grid search of the

approach asymptotes was done to quantify the range of impacting mass ratios.
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CHAPTER 4. CHARACTERIZATION AND INTERCEPTION

This chapter addresses work towards on-orbit parallel computing for characterization and

interception of a hazardous near-Earth object. The preliminary steps employed include the

implementation of a simulated image-processing environment to allow for vision-based guid-

ance, navigation, and control (GNC) of the interceptor spacecraft. Even flying similar parallel

algorithms is not that far outside of flight heritage; image processing has been included as

dedicated chips on many space missions. The addition of general purpose algorithm computing

would be primarily a software change. This thesis gives a brief discussion of the chacteriza-

tion and interception plugins for the simulation environment developed by the author for the

ADRC, including image rendering of a wireframe asteroid model, simply GNC operations, and

environment estimation from LIDAR observations.

4.1 3D Target Polygon Model

Figure 4.1 Surface Model for Eros.

This section addresses the rendering of the images in simulation memory that correspond to

camera data to be processed by the spacecraft. We begin with a triangulation of surface points
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represented as a 3D wireframe polygon model. The target model is derived from data for the

asteroid 433 Eros [64], as shown in Figure 4.1. This data was collected by the NEAR mission,

and has 200700 faces. This number of faces corresponds to the variable nf of the computer

model. Generally, the number of vertices needed to fill out the model, nv, is strictly less than

nf , so it is more computationally efficient to do calculations on the vertices where possible.

However, much of our information depends in some sense on an orientation of the body surface,

for which the faces are necessary. A connectivity array stores the relationships between each

set of vertex data and which face it applies to. If R1, R2, and R3 are the position vectors for

the vertices of a face, as shown in Figure 4.2, then we can define for 1 ≤ i ≤ nf :

Figure 4.2 Facet Geometry Definitions.

Xi = R2 −R1, Yi = R3 −R1, Zi = (R1 + R2 + R3)/3 (4.1)

The unit normal vectors of each face are calculated and stored using

Ni = Xi ×Yi, Ni · Zi > 0 (4.2)

The wireframe model uses a known rotation state of the target, though this information is

not available to the spacecraft. A rotation matrix is applied to the initial conditions so that

a simulated real state is known for the 3D model. To complete this system description, we
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require a unit sun vector, Ŝ, in the direction of the sun from the target and a unit view vector,

V̂, in the direction of the spacecraft from the target. We assume that the true center of mass

of the target is at the origin on this coordinate system.

4.1.1 Camera Pointing and Focus Plane

In order to decouple the attitude and translation mechanics of the present simulation system,

a perfect pointing was adopted for the camera. Thus, the choice of estimated center of mass or

previously computed center of brightness is at the center of the camera focal plane, with the

camera needing zero time to adjust to the new settings. Modifications to this scheme, including

integration with spacecraft attitude are expected in the near future. The camera focal plane

distance was chosen arbitrarily as the distance from the spacecraft to target. Since this plane is

perpendicular to V̂ we can project the 3D model onto this plane by subtracting the component

along this vector, thus the projected locations of the vertices are:

Pj = Rj − V̂, 1 ≤ j ≤ 3 (4.3)

To save computational time and storage space, a condensed array of these values are com-

puted only for the faces satisfying Ni · V̂ > 0. This results in only the faces visible to the

spacecraft. Due to the decoupling of the camera dynamics, a direct orientation of this plane is

not possible given the currently available information. Thus, a direction for camera up must

be chosen. We choose unit vectors Û and Ŵ such that

Ŵ = Ŝ× V̂ Û = −V̂× Ŵ (4.4)

Therefore, the sunlight will always come into frame from a horizontal direction, and up

will always be orthogonal to the plane containing the target, the sun, and the spacecraft. The

coordinates of each vertex in this plane can be computed as:

P̃j =

[
uj wj

]T
=

[
Pj · Û Pj · Ŵ

]T
(4.5)
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Table 4.1 Simulated Camera Parameters

High Resolution Medium Resolution Infrared

Resolution (xr, yr) (pixels) 1024 × 1024 1024 × 1024 512 × 512

Field of View (fv) (radians) 2.05× 10−3 10.0× 10−3 10.0× 10−3

Pixel Size at 1,000 km (m) 2.0 9.8 19.5

At this point, what is visible to the spacecraft depends on camera parameters that interpret

the real system. The resolution and field of view for the cameras simulated are listed in

Table 4.1. At each time step, these are used to compute the half resolution of the image plane,

Rh. If RT is the position vector representing the spacecraft in the target frame, then this can

be computed as:

Rh = |RT | tan

(
1

2
fv

)
(4.6)

where fv represents the field of view in radians (assumed isotropic). If xr and yr represent

the x and y resolutions in the camera 2D pixel frame, then the information represented by each

pixel corresponds to a size of 2Rh/xr in the horizontal direction and 2Rh/yr in the vertical

direction.

4.1.2 Lighting Conditions

A simple flat shading model is used to calculate the brightness of the target surface. Given

a diffuse lighting coefficient, kd, and an ambient lighting coefficient , ka, the corresponding

brightness attributed to each face of the 3D model is

Ci =

 kd(Ni · Ŝ) + ka, Ni · Ŝ > 0

0, Ni · Ŝ ≤ 0
(4.7)

where a value Ci of 1 corresponds to perfect reflectivity of the incident sunlight at that

distance. A greyscale colormap is used for human visualization. The diffuse coefficient works

closely in line with the albedo, and is chosen to be 0.25 for the simulations. Since the cameras

we are using have very little time to resolve detail of the body, we assume that their lower
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threshold for brightness is very low and therefore ka = 0. This model is very fast, and can be

computed completely in parallel for each face.

When additional lighting detail is desired, the following interpolation model due to Gouraud [65]

is used. Let each vertex have a normal Ñ1, Ñ2, and Ñ3 computed as an average of the adjacent

faces, found from inverting the connectivity array. Then, a corresponding value for brightness

at each vertex C̃1, C̃2, and C̃3 is computed using the flat shading model equation. If a pixel

representing the image plane at [u w]T is calculated to intercept this triangle, then an inverse

squared weighted average is assigned to the pixel:

C(u,w) =
α1

αT
C̃1 +

α2

αT
C̃2 +

α3

αT
C̃3 (4.8)

where αT = α1 + α2 + α3 and

αj =
1

(u− uj)2 + (w − wj)2
, 1 ≤ j ≤ 3 (4.9)

4.1.3 Pixel Value Assignment

For either the flat or interpolated shading models, the facet at which a pixel intercepts the

target projection must be determined. This is done on the GPU in parallel to reduce computa-

tional time, especially using a higher fidelity target model. Each pixel is assigned coordinates in

the u, w plane representing the center of the box over which the pixel is integrated. This works

well when the size of a pixel is on the scale of the surface facets, but an averaged value needs to

be used at greater distances. To determine the intercepted triangle, we first compute the upper

and lower bounds of each visible triangle in parallel. Then, a reduction is performed to get the

outer limits of the target in the UW system. This process is represented in Figure 4.3. Pixels

outside of this range can automatically be assigned a value of 0. In fact, only the location and

value of nonzero image components are stored in the present computational model.

The arrays containing the limits of each facet are sorted, and then a scan of these arrays

is completed. This lets us assign a vector of possible intersections for each pixel. This vector

contains the IDs of all facets through which the pixel passes through the bounding box. This

is generally a low number. For each candidate intersection, the convex hull of the triangle, Hi,
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Figure 4.3 Parallel Trim Reduction Technique.

is identified, as shown in Figure 4.2. This is projected onto the UW plane, forming the set H̃i

shown in Figure 4.3. If X̃i and Ỹi are the projections of Xi and Yi in the UW plane, then the

coordinates of the pixel can be expressed as

 u

w

 = P̃1 + d1X̃i + d2Ỹi (4.10)

which can be viewed as a transformation into the affine system defined by these two vectors.

It is a well-known result from geometry that the point [u w]T lies within the triangle if d1 > 0,

d2 > 0, and d1 + d2 < 1. This generally assigns a single facet as the possibility for intersection.

However, at pixels near the boundary of the target, several potential intersection may occur.

In these cases, the closest triangle (Zi · V̂ largest) is chosen.

For the 3D LIDAR measurement, we interpolate based on the distances to the vertices of the

intercepted triangle in the UW plane. Using the same weighting constants as the interpolated

brightness model, we compute

Lk =
α1

αT
R1 +

α2

αT
R2 +

α3

αT
R3 =

[
xk yk zk

]T
(4.11)

where L is a vector measurement of the reflection in Cartesian coordinates centered on the

target. We also have 1leqkleqnp, where the total number of measurements, np, grows with

time.
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4.2 Line of Sight Vector

For the present implementation, the estimated line of sight vector is chosen to be the center

of brightness. If I(u, v) is a matrix storing the values of brightness for the image, then the

centroid of the image array is computed using an weighted average

ū =

∑
I(u, v)u∑
I(u, v)

, w̄ =

∑
I(u, v)w∑
I(u, v)

(4.12)

The line of sight vector in the spacecraft frame is therefore

λ =

 ū

w̄

−RT (4.13)

4.3 Estimation of Target Reference Frame

Flash LIDAR measurements are desired as a way to reinforce optical measurements of tar-

get size and shape data. Unfortunately, we must be able to interpolate this from undersampled

areas of the target. The present simulation model builds a least-squares energy ellipsoid repre-

senting the LIDAR measurements. Let A be a symmetric, positive definite matrix formed by

the vector A:

A =


A1 A2 A3

A2 A4 A5

A3 A5 A6

 (4.14)

and E represent the quadratic form produced by A

Ek = LTkALk = A1x
2
k + 2A2xkyk + 2A3xkzk +A4y

2
k + 2A5ykzk +A6z

2
k (4.15)

Then, for nonzero integer values, m, the residual function

rk = r(Lk) = Em − 1 (4.16)
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represents an energy measure of distance from the ellipsoid E = 1. Various values of m have

interesting properties and are readily solved by nonlinear least squares methods. We chose the

Levenberg-Marquardt method with line search, requiring QR factorization of the Jacobian at

each linearization [66]. Results are shown for the case of m = 1. In this case, the residual is a

linear function of the parameters A, reducing the problem to a linear least squares parameter

optimization. The rows of the constant Jacobian are readily computed as

Jk =
∂rk
∂A

=

[
x2
k 2xkyk 2xkzk y2

k 2ykzk z2
k

]
(4.17)

This process works exceptionally for random input data. However, using simulated LIDAR

measurements results in an overshoot by an order of magnitude followed by a slow correction

process. Due to measurements being taken at close angular separation, heteroscedasticity in

the input data is observed. This results from oversampling in some regions of the target and

vastly undersampling other regions. Therefore, using a conditional variance, Ω, of the expected

value −rk given Jk a weighted least squares problem is defined

min
A

∑
rTk Ω−1rk (4.18)

Assuming that Ω is diagonal, and that individual measurements are not dependent on one

another, we can form the solution parameter vector

A = −(JTΩ−1J)−1JTΩ−1rk (4.19)

Choosing a weighting scheme such that

ωk = Ω
−1/2
kk (4.20)

Then, it can be shown that we have a linear least squares problem in the variables r̃k = ωkrk

and J̃k = ωkJk. While initial attempts to determine weights used a measure of data density

to determine variance, it was quickly determined that this was not an ideal implementation.

For large numbers of measurements, the density calculation is equivalent to a nearest neighbor

search, which scales at best as np log np and at worst as n2
p. The formulation is particularly
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vulnerable to the weighting problem due to E being positive definite. Therefore, under the

original approach |rk| < 1 for all rk < 0, while |rk| is unbounded for rk > 0. This tends to

result in overshoot of the longest ellipsoid axis to minimize errors in oversampled regions, while

allowing for large physical deviations for points with E < 1. Taking into account this issue, a

weighting scheme to force inclusion of these points was used:

ωk =
1

1 + Ek
(4.21)

Once suitable values for the matrix A are found, the representative ellipsoid can inform us

of the target orientation vector frame. We have the eigenvector decomposition A = V DV T ,

where the elements of the matrix D contain the eigenvalues of A, which correspond to the

ellipsoid semiaxis parameters, a, b, and c:

D = diag

(
1
a2
, 1

b2
, 1

c2

)
(4.22)

and the matrix V contains the unit eigenvectors of A, which corresponds to the new tar-

get coordinate frame. This coordinate frame can then be used for orbit determination and

operations, and the combined measurements can be used for a surface bound estimate to first

order.
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CHAPTER 5. COMPUTATIONAL STRUCTURE

This chapter addresses the parallelization and designed computational structure for the

present simulation model. A brief introduction into the CPU parallelization ideas is presented,

followed by a general description of GPU computing. The particulars of the high-level language

access are discussed, and finally the hardware and software tested are given.

5.1 CPU Parallelization

inding a motivation for parallelization of a particular algorithm is usually not a difficult

task. Even basic computations repeated for design cycle purposes, optimization, or other

forms of iterative improvement, can explode the required computing time to unacceptable

levels. The case of the application problem presented later is an example of where analysis

of input conditions requires repeated runs of the model simulation. With millions of required

calculations, short time steps or repeated runs become prohibitive in terms of computational

cost. Many researchers believe that parallelizing their algorithms for compiled simulations

is only necessary if they plan to run them on a supercomputer. However, modern multi-

core desktop systems are readily available in most research environments, and proper use of

parallelization techniques can reduce time-to-solution for simulation programs. Two main types

of parallel platforms are available, and they have corresponding techniques and libraries for their

use. Two open source libraries, OpenMP and Message Passing Interface (MPI), are discussed

in this paper. The reader is provided with examples of relevant grammar and library references

needed, and is referred to other sources for further study.
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Figure 5.1 Comparison of SMP and DMP Architecture

5.1.1 Description of Parallel Architectures

As previously mentioned, there are two main types of parallel computer systems. The first

is called Shared Memory Parallel (SMP) Architecture, while the second is called Distributed

Memory Parallel (DMP) Architecture. Each computer system, often identified as its printed

circuit board (also known as a system board, main board, or motherboard), will be referred to

as a node [67]. Each Central Processing Unit (CPU) is represented virtually as the capability to

run a single program (or thread), and will be referred to as a core. In the case where a system

has one node, but many cores, the cores can all access the same memory bank. This type of

computer, common of multi-core desktops, is a standalone SMP architecture. DMP systems

will often have several nodes, each with its own memory bank that is unreadable by the other

nodes. Communication that is required between nodes is handled using networking technology

or other communication equipment [67, 68]. Figure 5.1 shows a visual comparison of SMP

and DMP architectures. Traditional DMP parallelization can have more cores than physical

nodes, but are still treated as if each core is a node. Multi-core systems that are networked

together are handled by running threads on each core independently. Composite approaches

utilize one library for communications between physical nodes while treating each node as a

SMP system. These approaches can be more complicated and prone to programming errors,

but offer benefits in memory usage and efficiency. Figure 5.2 shows an example composite
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architecture, divided into SMP and DMP regions. More complicated architectures are also

used, though combinations of these two are most likely to be encountered by the average

researcher.

Figure 5.2 Example of a Composite SMP/DMP Architecture

5.1.2 OpenMP and MPI

OpenMP is an Application Program Interface (API) that facilitates parallelism in SMP

environments. It consists of a library of architecture-dependent variables, functions, and sub-

routines that are useful in speeding up the processing of algorithms. It also consists of compiler

directives through which the programmer can direct the creation of threads, the use of memory,

and other application-specific needs[69]. OpenMP specifications exist primarily for C, C++,

and Fortran programs. They extend the basic language specifications to add loops, constructs,

and communication necessary to fully utilize a SMP system, while maintaining the portability

of using a compiled language for simulation. Programming directives are given as comments,

so compiling them on a system without OpenMP results in the creation of a serial program

without changes being made to the source code. Specific syntax was used in the Fortran lan-

guage, though equivalent translations in C and C++ are available in the OpenMP specification

guide[69].

Several of the routines available in the OpenMP library can be used within parallel regions
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to set and determine the local working environment. OpenMP works through directing areas

of a serial program to spawn teams of computing threads at specific points. These teams carry

out the directed task, and then are reintegrated back into a serial section of the program. This

allows for actions typically reserved for serial codes (such as input and output) to be taken, and

for parallel execution of specific tasks. It often allows existing serial code to be parallelized in a

few step by identifying key loop and memory structures to be split up among threads. Parallel

regions in a SMP program can be nested, though the exact application determines whether or

not an error would occur. Further programming guidelines using OpenMP can be found in the

API manual[69].

Contrasted to OpenMP, traditional implementations of Message Passing Interface take place

using an external process scheduler. A package including MPI and MPI-compliant compilers

must be installed on the DMP architecture. Specific implementation, including communication

among nodes, must be handled by the programmer. For this reason, the algorithms presented

in this paper will be restricted to OpenMP, though the relevant commands for MPI implemen-

tation can be found in References [68, 70]. Since the spawn of processes is handled outside of

the source code, the simulation needs to be programmed with the knowledge that an individual

executable will be run by each computing thread.

5.2 GPU Computing

As the Central Processing Unit (CPU) of the modern personal computers and worksta-

tions evolved, there was a substantial problem overcoming thermal issues that accompanied

additional computing power. One solution to these thermal issues was to design multi-core

CPUs capable of handling several computing threads in parallel [71]. Additionally, as graphics

for games and commercial applications grew more demanding, a separate Graphics Processing

Unit (GPU) was implemented to allow the screen rendering to be performed by an alternate

processing chip. In most graphic applications, either pixels or sections of the display can be

calculated separately from each other. Due to this fact, the GPU evolved into a many-core

parallel structure, trading core clock speed for number of parallel computing threads. At the

time of writing, retail GPU chips are available with up to 512 cores and over 1 trillion floating
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point operations per second (FLOPs) of theoretical computing power [71, 72]. For comparison,

a standard workstation processor averages 10-20 GFLOPs. Due to this leap in technology, the

GPU has been considered by many the ideal commercially-available massively parallel archi-

tecture.

Early simulations and computing programs written for execution on the GPU were done

using graphics processing languages. These approaches cleverly harnessed the computing power

available by casting a problem as one involving textures and pixels. DirectCompute, OpenGL,

and other languages were very powerful methods for moving computation from the CPU to the

GPU, freeing resources and allowing problems to scale more easily [73]. However, for general

scientific computing this method had a steep learning curve. In 2006, NVIDIA launched the

Compute Unified Device Architecture (CUDA), which allowed compilation of GPU executables

to be created through extensions to the C language. This approach is highly portable, and an

example of the versatility of general scientific computing on the GPU [72]. The present simu-

lation package uses a mixture of CUDA C and the Portland Group’s CUDA FORTRAN [74].

5.2.1 Hardware and Implementation

A variety of hardware was available for this project, with a substantial difference in perfor-

mance. This allowed us to get reasonable estimates on the computational cost of this simulation,

in comparison to LINPACK performance numbers. Performance can vary based on the type

of arrays used, and the number of threads dedicated to each GPU calculation. These factors

are determined by the CUDA Compute Capability (CUDA CC), which is a property of the

GPU [72]. These cost estimates are used to determine hardware performance on the various

systems. A summary of the hardware used is shown in Table 5.1 (Note: all CPUs are Intel

brand, and all GPUs are NVIDIA brand).

5.2.2 Hydrodynamic Calculations

Each thread on the GPU calculates the state variable change for one fragment, with the

GPU kernel limited to one time step. This is necessary because the positions of the planets

and other gravitating bodies must be calculated and transferred to the GPU at each time step.
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Table 5.1 Hardware for Benchmark Systems

System Machine 1 Machine 2 Machine 3 Machine 4 Machine 5
CPU 1x Core2 Q6600 1x Core2 Q6600 1x Xeon X5550 2x Xeon E5520 2x Xeon X5650

CPU Cores 4 4 4 8 12
CPU TPEAK 9.6 GFLOPs 9.6 GFLOPs 12.8 GFLOPs 21.36 GFLOPs 32.04 GFLOPs

GPU 1x 8800GTS 1x GTX470 1x GTX480 4x Tesla c1060 4x Tesla c2050
GPU Cores 112 448 480 960 1792

GPU TPEAK 84 GFLOPs 324 GFLOPs 385 GFLOPs 336 GFLOPs 2060 GFLOPs
CUDA CC CC 1.0 CC 2.0 CC 2.0 CC 1.3 CC 2.0

Additionally, the positions of fragments at each integration substep are shared among multiple

GPUs and CPU threads. For this reason, the present hydrodynamics model is predominantly

bandwidth-limited for small data sets. While grid information is not retained, one of the

disadvantages of the SPH hydrocode is that neighboring particles must be calculated at each

time step. Our approach in this model is to create a bounding volume for each SPH particle

and perform the same Sort and Sweep in parallel as used to detect collisions in the orbital

model [42]]. We retain the information for neighbors connected by material strength, as well

as carrying neighbor information through the correction step of the integrator. This results

in a 28% performance improvement over recalculating neighbors at both the prediction and

correction steps, while allowing for a variable time step based on the Courant condition [32, 33]:

δt = min
i

hi
ci

(5.1)

where c is the local sound speed. While the reduction operation to determine the new time

step can be done in parallel, all GPU threads must have position information for all particles

to determine neighbors. This requirement could be eliminated through clever domain decom-

position, but there is a tradeoff between associating a mesh to the model and taking advantage

of contiguous memory sections of particles. Load balancing would also require additional com-

munication between GPUs, which has an impact on performance, as PCI-E bandwidth is one

of the limiting factors in GPU acceleration [71].

Our memory model for this simulation includes a shared host memory, distributed device

memory for each GPU, and data transfers between them handled through explicit array trans-
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fer. Each block of compute threads on the GPU takes the data it needs from the global device

memory when the kernel reaches its block. This is an important factor, because the varying

compute capabilities have different limitations on this block memory, changing the number of

threads that may be used in the calculation. Constants are transferred to all GPU memories

implicitly using a pointer to the host constant value.

5.2.3 Orbital Calculations

The implementation of the simulation is conducted in two ways. The first version uses

CUDA extensions to the C language, and bindings for these kernels into existing Fortran

90 code. The second version uses CUDA Fortran, developed by the PGI group [74]. Since

different sets of parameters are computationally independent of one another, one way to conduct

parameter variation would be to have each computing thread handle a combined set of timing

and scaling parameters, as shown in Figure 5.3. However, for memory management and to lower

the amount of repeated calculations, we utilize the parallel nature of the fragments themselves

as a basis for computation.

Figure 5.3 Visualization of Parameter Sweep Method.

We fix a value for the timing parameters, allowing the nominal orbit to be calculated and

shared among all versions of memory (discussed below). Then, looping through the velocity

scaling parameter values, each thread on the GPU calculates the state variable change for one
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fragment, with the GPU kernel limited to one time step. This is necessary because the positions

of the planets and other gravitating bodies must be calculated and transferred to the GPU at

each time step. The final algorithm is shown in block diagram form in Figure 5.4.

Figure 5.4 Block Diagram of Simulation Procedure.

5.2.4 Memory Model and Explicit Communication

Our memory model for this simulation includes a shared host memory, distributed device

memory for each GPU, and data transfers between them handled through explicit array trans-

fer. Each block of compute threads on the GPU takes the data it needs from the global device

memory when the kernel reaches its block. This is an important factor, because hardware

compute capabilities have different limitations on this block memory, changing the number of

threads that may be used in the calculation. Constants are transferred to all GPU memories

implicitly using a pointer to the host constant value. Figure 5.5 shows an overview of this

computational memory model.

The explicit communication needed in the simulation for a single set of parameters is shown

in the following psuedocode:

*Transfer state variable arrays Host to Device

Begin loop through time steps

Calculate planetary positions at subintervals on host
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Figure 5.5 Visualization of Memory Model.

*Transfer planet position arrays Host to Device

Launch GPU kernels to update state variables

Calculate closest approach to Earth on GPU

*Overwrite state arrays with Device to Device memory transfer

End time step loop

*Transfer final state back to Host, including close approach

Postprocessing on Host

5.2.5 Bandwidth Use and Serial Computation

One of the primary limitations of GPU acceleration is the PCI bus connecting the Host to

the Device. Communication between these two sets of memory, or between individual GPUs,

is therefore very expensive [72, 74]. Thus, the use of communication bandwidth should be min-

imized to achieve optimal performance. For example, an early implementation of a numerical

integrator may be a subroutine that reads state variables from Host memory, computes the up-

dated state on the GPU, and returns the next state to the Host. Unless the computation of the

updated state is extremely intensive, this approach will not yield a high speedup over a CPU

implementation. For smaller problems, the approach discussed above is preferred. Though the

device code may be more complicated, this method was found to be an order of magnitude

faster for a fragmented NEO system with 18,220 fragments. With 511,744 fragments, the lim-

itation from data transfer is less pronounced, though leaving arrays in device memory yielded

a simulation that ran 5 times faster.



www.manaraa.com

65

While modern dedicated compute GPUs have a high amount of onboard memory, it usually

is far less than system memory. Though it may seem advantageous to calculate parameters

for every time step before the start of the simulation, the resulting arrays can be quite large.

Each model of GPU has a limited number of memory registers available to each computing

block of threads [72]. Therefore, the use of several large arrays can actually slow down the

simulation in some cases, by lowering the number of threads below the maximum allowed by

the architecture. This trades off directly with the added expense of calculating parameters on

the Host at each timestep. For the present work, calculating planetary positions at each step

was found to be preferable to using a large pre-calculated array. For some hardware, sufficient

GPU memory was not available.

5.2.6 Integration with SMP Computation

Some of the systems used to test this work had multiple GPUs. This was used to the

advantage of the program by launching several Shared Memory Parallel (SMP) threads on the

Host CPU. Each thread, or team of threads, was assigned a GPU on which to launch compute

kernels. The calculations were conducted on portions of the state variable arrays. Since no

interaction among fragments was assumed, the GPUs did not have to communicate the states

of the fragments they were responsible for. This was found to be an extremely effective setup

for large data sets, and scaled almost linearly to the number of GPUs used with some overhead

for data transfer to partial arrays on the GPUs.
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CHAPTER 6. RESULTS

This chapter details the results of the developed simulation package, and insights gained

into the importance of several variables of the problem. A short description of the resulting

trajectory analysis is given, followed by a discussion of the computational optimization steps

employed. Finally, the author engages in a brief discussion of the conclusions drawn.

6.1 Semianalytical Standoff Model

To compare with the results of similar models, a NEO with a radius of 500 m was chosen,

and the energy from neutrons was assumed to be the primary energy available of the overall

stated yield of 1 MtTNT. The results for the momentum coupling approaches are shown in

Figure 6.1, and provide an adequate range for velocity change due to momentum transfer. This

approach lacks the benefit of an optimum value and predicts a drastic decrease in deflection

effectiveness with increased standoff distance. Fig. 8 shows the results of the solid body pressure

blow-off model with γ values of 1.1 and 1.3. Two basic scattering efficiency values are chosen to

emphasize the change in results due to different assumptions of ejecta distribution. An optimal

standoff distance of about 200 m for an ideal spherical model of this 1-km NEO example can

be noticed in Figure 6.1. It is also interesting to notice that an optimal standoff distance of

20 m was obtained for the same 1-km NEO in [14]. The neutron assumption differs from the

energy breakdown of the blast model presented, but the hydrodynamics simulations provide

the changes necessary to confirm these results. Due to the reliance of the model on energy

methods, our simple model predicts significant reduction in ∆V at small standoff distances,

which may not be acceptable for a deflection mission. Accounting for changes such as melting

or sublimation which might also make decreasing the optimal standoff distance should be a
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topic of continuing research.

Figure 6.1 Comparison of velocity changes for momentum coupling and solid body model.

The resulting compression waves in the remaining material appear to be small enough that

further fragmentation of the NEO is unlikely for large bodies [17], though many authors suggest

that the initial blast may be enough to damage the material structure [10, 15]. Computer

simulations will be valuable in determining the momentum of fragments and the results of

the cratering process. Likelihood of the fragments impacting Earth would be a significant

factor in choosing the method of deflection [50]. As an initial effort in establishing a model

of nuclear standoff deflection, this comparison has shown that increased knowledge of object

composition and structure is needed to accurately reflect the results of a nuclear standoff

explosion. Corrections are likely needed for anisotropies of the nuclear blast and non-thermal

interactions with material in the layer of deposition. A more rigorous model of the blast itself

is therefore necessary to establish a general description of nuclear standoff explosions.

The generation of NEOs through collisions resulted in many fragmented asteroids with

porous surfaces. Detailed analysis of a target asteroid would be needed to determine surface

composition and distribution [11, 49]. While large asteroids are usually solid bodies, smaller

asteroids can have porosities ranging up to 70 percent [49], and therefore present a considerable

problem for deflection. Bodies with high porosity, or rubble piles, have significant changes to

material strength characteristics. These changes are complicated, and analytical formulas to

account for them have not been agreed upon [14]. It is possible that at very high energies
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even porous NEOs behave similarly to solid bodies [15], and this is a future study topic worth

investigating using high-fidelity simulation.

Deflection attempts involving nuclear explosions involve the interaction of high-energy neu-

trons. The primary mode of interaction with these neutrons is inelastic scattering within surface

material. The energy transfer is therefore primarily thermal excitation [51]. The characteris-

tic penetration depth for asteroid material is often assumed to be around 20 cm [17], though

different models for the mechanism of energy transfer predict different depths. In general, the

specific energy is weakly dependent on incident angle, but the model considered in this paper

assumes a uniform distribution of energy over the irradiated surface. Absorption and scat-

tering of photons are the simplest methods of energy transfer, though gamma radiation may

be subject to more complicated mechanisms [51]. Most X-ray photons contain enough energy

to ionize material, which makes crystal structure more likely to fragment and may lower the

threshold necessary for the material to sublime. More advanced approaches should account for

the absorption changes with incident angle.

6.2 Disruption Results

Figure 6.2 Relative Performance for Surface Impactor.

In order to address the effectiveness of different fragmentation methods, we compare the
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mass remaining on impacting trajectories (including the uncertainty from the Monte Carlo

process) against other methods for each orbit. For example, Figure 6.2 shows the relative

impacting mass for the surface penetrator in both the solid and the rubble-pile targets. On av-

erage across the orbits tested, the impacting mass was 10% higher for the solid target compared

to the rubble target for deflections in the radial direction. Estimates like this will eventually

allow for tabular look-up of performance for various methods without direct computation. It

was also found that impacting mass for the solid target was 20% higher than the rubble target

in the transverse direction.

Figure 6.3 Impacting Mass for Subsurface Explosion on Orbits with Varying Inclination.

No strong correlation was found for the semimajor axis or eccentricity of the NEO orbit

with only 15 days of lead time. However, deflections on orbits with high inclination were

more effective, as shown in Figure 6.3 for the subsurface case. Ejecta velocities for the dynamic

surface burst (at 6.1 km/s) were within the 10% assumed noise range compared to a static buried

explosive, as shown in Figure 6.4. Thus, an emphasis might be placed on hypervelocity intercept

and guidance technology rather than a rendezvous mission. One possible interceptor design

includes an aluminum impactor followed by an explosive. With both interceptors impacting at

6.1 km/s, the resulting ejecta speed is on average 25% higher than the single surface blast, with

a standard deviation of 5.3%. Figure 6.5 shows the relative velocities for these cases, which
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results in 20% lower impacting mass on most orbits tested for the 54 m initial spherical target

due to the proposed HAIV concept.

Figure 6.4 Impacting Mass Comparison for Subsurface and Dynamic Surface Cases.

6.3 Nominal Fragmentation Behavior

Orbital propagation for the Apophis-like orbit described earlier yields insight into the types

of variables that effect the behavior of a disrupted NEO on a collision trajectory with the

Earth. Using identical time step constraints we achieve results for impacting mass between

0.1% and 7.1%, consistent with previous simulations. These results, with dominant dispersion

speeds along the coordinate axes of the LVLH system, are shown in Figure 6.6. However,

a tightening of time step restrictions to a maximum step of 1 minute tells a much different

story, with the impact values converging to 0.6-26.1% of the total asteroid mass after 15 days

of dispersion along an Apophis-like trajectory, as shown in Figure 6.7. This brings up the

point that, while longer time steps are advantageous in overall computational cost, accuracy is

sacrificed, particularly within the sphere of influence of the Earth.

Table 6.1 shows the number of impact bodies for each scenario described previously, both

for the large time step and the small time step models. Also shown is the total fraction of

the initial mass estimated to hit the planet. Not shown are bodies that may be captured
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Figure 6.5 Mean Ejecta Velocity for Single and Double Impactor Cases.

or perturbed to future impacting orbits, which is a subject of current research. It is clear

that a maximum time step of 1 hour is not sufficient to resolve the details we require. This

is further emphasized by the results for a dispersion along a full orbit, which are shown in

Table 6.2. These values clearly indicate that previous accuracy requirements underestimate

impacting fragments, and do not yield statistically representative results. The results for a 300

kT disruption are contrasted to results from initial velocity conditions scaled up to simulate

the increased kinetic energy provided by a 1 MT explosion in Table 6.3. The decreased time

step is further justified by comparing results to the ODE solver package available in Matlab,

shown in Figure 6.8.

It should be noted that, while a large fraction of the initial asteroid mass misses the Earth

following the fragmentation attempt, it is spread over an area substantially larger than the

initial impact plane. Fragments are ejected normal to the nominal orbit plane from part of the

explosion-induced velocity, and therefore the Earth faces something far more like a cloud than

an individual impacting body. While many of these fragments are small enough to burn up in

the atmosphere, the Earth passes through a large cloud of them while rotating to expose new

target areas over the course of several hours. A map of fragment impacts relative to a fixed

rotating meridian is shown in Figure 6.9 on the left for a deflection along the radial direction
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Table 6.1 Number and Mass Ratio of Impacting Fragments

Long Time Step Number Mass Ratio Short Time Step Number Mass Ratio

+Radial (1 hour) 85 1.7114E-4 +Radial (1 min) 201 6.5036E-3

-Radial (1 hour) 87 1.4754E-3 -Radial (1 min) 117 5.8318E-3

+Transverse (1 hour) 2190 7.1259E-2 +Transverse (1 min) 6283 0.26061

-Transverse (1 hour) 2151 7.1007E-2 -Transverse (1 min) 5967 0.24096

+Normal (1 hour) 113 4.9174E-3 +Normal (1 min) 500 3.2357E-2

-Normal (1 hour) 124 5.5269E-3 -Normal (1 min) 523 3.4444E-2

Perpendicular 210 8.2003E-3

Velocity Direction 5652 0.18602

Table 6.2 Number and Mass Ratio of Impacting Fragments after 1 Orbit

Long Time Step Number Mass Ratio Short Time Step Number Mass Ratio

+Radial (1 hour) 0 0.0000 +Radial (1 min) 70 9.8319E-5

-Radial (1 hour) 0 0.0000 -Radial (1 min) 75 4.2690E-4

+Transverse (1 hour) 0 0.0000 +Transverse (1 min) 124 5.5841E-3

-Transverse (1 hour) 0 0.0000 -Transverse (1 min) 114 3.8744E-3

+Normal (1 hour) 0 0.0000 +Normal (1 min) 73 1.5628E-4

-Normal (1 hour) 0 0.0000 -Normal (1 min) 78 3.0914E-3

Table 6.3 Impacting Fragments for 1 MT Disruption after 15 day Dispersion

Long Time Step Number Mass Ratio Short Time Step Number Mass Ratio

+Radial (1 hour) 75 2.3150E-4 +Radial (1 min) 88 4.6531E-4

-Radial (1 hour) 75 8.9270E-5 -Radial (1 min) 83 5.4553E-4

+Transverse (1 hour) 1019 3.6597E-2 +Transverse (1 min) 3038 0.13655

-Transverse (1 hour) 954 3.3698E-2 -Transverse (1 min) 2637 0.12496

+Normal (1 hour) 81 4.7705E-3 +Normal (1 min) 148 1.3163E-2

-Normal (1 hour) 85 6.5133E-3 -Normal (1 min) 147 1.4271E-2
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Figure 6.6 Miss Distance Histograms for 1 Hour Maximum Time Step Simulations.

resulting in 0.6% of the original asteroid mass on impact trajectories. A clustering of strikes

on one side of the globe can be seen, as well as strikes from bodies that impact over 4 hours

later than the first fragment, as the Earth rotates. Strikes predominantly in the Pacific Ocean

and East Asia were observed for this scenario.

It is clear from these preliminary simulation results that the radial deflection case is optimal

with such short lead time, Figure 6.7 shows that transverse deflections can still be catastrophic

if the NEO is fragmented rather than deflected, with up to 26% of the original mass still on

impacting trajectories. Furthermore, it can also be seen in Figure 6.9 on the right that this

deflection attempt results in a concentrated band of material striking the Earth. It has been

hypothesized that dense clusters of small bodies actually shield each other from some measure

of reentry heating, and therefore have improved atmospheric penetration. In that scenario,

fragmentation would not be beneficial and great care should be taken to deflect the orbit of

the NEO rather than disrupt it along the flight path. At this time it is believed that deflection

mission designs for radial deflection are preferable for short warning time mission planning

utilizing nuclear explosions.

Also important to the viability of fragmentation is orbit geometry. Past analysis indicated

that circular orbits (and orbits for which the interaction with the Earth occurred near aphelion)
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Figure 6.7 Miss Distance Histograms for 1 Minute Maximum Time Step Simulations.

resulted in particularly large fractions of impacting mass. This same phenomenon is observed

in the present results for deflections along the transverse axis. It is thought that for short

duration dispersion, such as the 15 day hypothetical mission presented here, deflection along

the velocity direction is substantially less effective than perpendicular to it. The results of these

two cases are also presented in Table 6.1, in which deflection along the velocity direction yields

an impacting mass fraction similar to that for transverse deflection and deflection perpendicular

to the velocity direction is comparable to radial deflection.

Figure 6.8 Comparison to Matlab Solver using Varied Time Steps.



www.manaraa.com

75

Figure 6.9 Impact Locations on a Fixed Earth after Radial and Transverse Deflections.

6.3.1 Timing and Scaling Parameter Variation

Figure 6.10 Impacting Mass Fraction Contours for Low Lead Time Cases.

A wide variety of timing and scaling parameters were investigated. Figure 6.10 shows the

steep drop-off in impacting mass when both the available amount of time and the explosive

power are increased for a range of up to 1.2 Mt and 30 days lead time. A different scale showing

the contour for 0.5% of the initial mass is also given in Figure 6.10. The advantage to this

approach over single parameter variation is that coupling between these two parameters can

be observed. For example, If we take 1% of the initial impacting mass to be a measurement

of success, then we can use the contour data to generate a relationship between lead time and

the required explosive energy. A comparison of an analytical model and the data is shown in

Figure 6.11. If L is the mission lead time and E is the required energy, this approximation is
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given by:

E = exp (-1.8401E-4L3 + 1.4826E-2L2 − 4.5491E-1L+ 9.9829) (6.1)

Figure 6.11 Analytical Approximation of Minimal Successful Mission Parameters.

The required explosive energy levels out below 200 kT as lead time increases. Therefore,

even if a conventional explosive were to disrupt the target, it would not have enough initial

kinetic energy to disperse the resulting fragments such that less than 1% of the initial mass

remains on impacting trajectories.

6.3.2 Reentry Modeling

Applying a simple drag and ablation reentry modeling to the impacting fragments of pre-

vious radial deflection results, we find that over 85% of the mass on impacting trajectories is

ablated from the fragments during the reentry process, and that only 10.7% of the mass listed

in Table 6.1 reaches the surface. The results of these simulations can be seen in Table 6.4. A

sample atmospheric stress distribution profile can be seen in Figure 6.12. The material yield

stress is clearly exceeded at an altitude of 8.5 km, at which point the fragment is presumed

to be catastrophically disrupted. Reentering fragments hit the atmosphere at relative speeds

between 8 km/s and 15 km/s, depending on velocity orientation. A sample velocity profile in

Figure 6.12 shows that velocity is reduced by drag and ablation to less than half its equivalent
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Table 6.4 Reentry Modeling Results

Deflection Type Bodies Burnups Impacts Final Mass Ratio

+Radial (1 minute) 201 82 119 5.5259E-4

-Radial (1 minute) 117 34 83 6.2385E-4

+Transverse (1 minute) 6283 3211 3072 2.2025E-2

-Transverse (1 minute) 5967 2742 3225 3.0726E-2

+Normal (1 minute) 500 258 242 3.5593E-3

-Normal (1 minute) 523 278 245 4.0355E-3

ballistic entry velocity. A corresponding reduction in fragment mass results in substantially

reduced impact energy.

Figure 6.12 Reentry Stress Distribution and Velocity Profile with Altitude for Example Dis-

rupted and Impacting Fragments.

6.4 Computational Optimization

A single computational node was used to determine optimal distribution of MPI and

OpenMP processes across the current worker topology being considered. This system has

2 sockets populated with Intel Xeon X5650 six-core CPUs at 2.66 Ghz. Intel HyperThread-

ing technology is enabled, resulting in 24 logical processors visible to the operating system.

Additionally, the default level of OpenMP threading is 24. There are 4 NVIDIA Tesla C2050

GPU cards, each connected on a dedicated PCI-E x16 bus. System RAM is 32 GB, while each

GPU has 3 GB GDDR5 for a total GPU work unit of 12 GB (11.2 GB with ECC enabled).
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Fourteen multiprocessors on each card result in 448 shader cores each, limited to a maximum

kernel launch of 1024 threads per thread block. This new “Fermi” GPU architecture has a

theoretical peak performance of 515 Mflops in double precision, representing a game-changing

leap forward in GPU double precision computing, as shown by real-world results.

While grid information does not need to be stored for this model, the drawback is that

neighboring particles need to be determined at each time step. Since the integration scheme is

a second order predictor-corrector scheme, particle information is needed at both steps. The

first change made to the standard scheme was to retain the neighbor ID information for the

corrector step. Only the kernel and kernel derivative values at the new neighbor predicted

position need to be computed. This reduced time-to-solution by 30.2% compared to a two-

stage neighbor finding algorithm. Results for both cases were compared, and while ending

state values could be slightly different the distribution remained the same, and the method

conserved energy slightly better through the end of the simulation. A possible beneficial side

effect of this approach is the reduction of importance of neighbor changes in a prediction step,

which might help damp out numerical instabilities and allow for larger time step changes.

This is something to be tested in the future. Also, while brute force computation of neighbor

particles was the original approach, a Sort-and-Sweep method reduced this time by 36% for

the present target model. This method scales as N logN rather than N2 [42].

Neighbor information arrays were stored in a column-major format by particle, allowing

stride 1 access to the ID number, kernel value, and kernel derivative values for each neighbor of

a particle. Additionally, loop unrolling and inlining for simple functions were implemented, and

optimization flags were passed in the build step. For the GPU model, utilizing asynchronous

kernel launches to continue computation without synchronization resulted in an 8% performance

increase. The theoretical load on each process should be equal, since each has the same number

of particles for which a state update needs to be computed. However, in areas of quickly

changing density (for example the expanding shock wave), the number of average neighbors for

a particle goes up dramatically. This is controlled in 2 ways to aid load balancing. First, the

ID assignment scheme works outward in a radial manner, while making sure that mirroring

particles on opposite sides of the primary axis are adjacent in memory. Second, the evolution
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of h strives to keep the number of neighboring particles near the starting value, resulting in

an equal computational burden. For the GPU model, a load factor was developed, dividing

the minimum time to complete a section between synchronizations by the maximum time.

Sampling this load factor allows one to better understand the efficiency of the code section. At

a time of 1.2 ms, an example chosen because of the high energy of this point of the simulation,

a vertical distribution of particle IDs resulted in a load factor efficiency of around 0.68. The

present method has improved this portion to a median of 0.87.

6.4.1 Performance

Pure MPI scalability for up to 12 processes was tested on the present hardware, resulting in

near linear scaling and a total parallel speedup of 8.9 for MPI. Including OpenMP in a Hybrid

parallel scheme, a total parallel speedup of 11.9 is achieved, showing near perfect expected

scalability across a single node as shown in Figure 6.13. Thus, each additional planned node

might add almost 12x speedup for host computation, minus internode communication overhead.

As shown in Figure 6.13, when the binding option is passed to the Hydra process manager to

set 1-2 MPI processes per socket, and an OpenMP thread level of 6 is set, the best performing

speedup for the system is obtained. This corresponds to a value of 11.2 for 12 computational

threads and 11.9 for 24 computational threads. Performance improvement using ¿ 12 threads

is predominantly dependent on the HyperThreading hardware implementation. This is shown

to only have an improvement over 12 threads when the shared thread level is 4, 6, 8, or 12.

However, good performance with 12 threads among these hybrid schemes was limited to an

OpenMP level of 6 and 12. While the default OpenMP maximum thread level for this system

is 24, benefits from this technology are implementation dependent, so the preferred setup for

future system programming is 1 MPI process per socket with an OpenMP threading level of 6

unless improvement from additional MPI processes can be demonstrated.

GPU acceleration performance for this method is a substantial improvement over a larger

CPU-only cluster. Since the threading structure of the GPU is limited to SIMD kernel launches

of multiple threads on a multiprocessor, serial performance for comparison is measured on the

host CPU. Figure 6.13 shows the relationship between the number of GPUs used in the state
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Figure 6.13 Comparison of Single-Node Performance on CPU and GPU.

update process and the parallel speedup. At least 1 MPI thread is needed per GPU. In fact,

using the currently supported CUDA Fortran toolkit (version 4.0), binding between CPU thread

and GPU control requires that additional threading use a shared memory approach such as

OpenMP. In a previous test, GPU speedup for this architecture ranges from 50x to 120x for a

50 m diameter target problem. Since the GPU approach works well for data-parallel problems,

one would expect that increasing the scale of the problem would yield better performance. In

fact, using the current solid target standoff model (3.1M particles) maximum speedup on a

single node is increased to 357.9x, as shown in Figure 6.13. Since the neighbor search problem

is substantially increased, the parallel structure of the GPU is far preferred to the hybrid CPU

programming model.

6.5 Optimal Mission Results

The present simulation package has the advantage of being able to handle millions of decou-

pled optimization problems in parallel to one another. Thus, the generation of data outpaces

the capability for displaying it in the present work. However, sample results are shown for a

nominal impacting trajectory with a lead time of 15 days. Figure 6.14 shows the cost func-

tion contours for approach asymptotes of a sample mission. This impacting trajectory has a

semimajor axis of 0.968, an eccentricity of 0.0242, and an inclination of 7.309 degrees.

It is clear for this case that, not only do local optimal solutions exist, but that there are
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specific conditions which should be avoided. However, this was not the case for all of the

virtual impacting trajectories. This fact was especially true for orbits of high eccentricity (>

20 degrees), which had many local minimums, and a wider range of effective dispersion options.

Deeper cost function wells existed for these cases, though the geometry was more complicated

than the lower inclination case, as shown. The contours are colored according to the base 10

logarithm of the resulting impact probability, showing a range of orders of magnitude. No clear

result for the optimal direction for all cases was established. In the sample case, the conditions

to be avoided were a perturbation normal to the plane of the orbit. The optimal directions

in this case are near parallel to the velocity direction. The vectors forming the solutions of

the tested orbits were uniformly distributed, which may be indicative of the lower lead time

mission.

As discussed in [23], some approach asymptotes are critical for interception with a single

launch. Therefore, future work should address the coupled problem of mission feasibility and

mission effectiveness. This will likely place stricter limits on the available lead times and the

payload mass deliverable to the target.

Figure 6.14 Cost Function Contours for Sample Mission Approach Asymptotes.
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6.6 Characterization Results

An example of the mass and enclosing volume estimation with limited flash LIDAR obser-

vations is shown in Figure 6.15. Convergence of the mass, size parameters, and body frame

orientation can be seen in Figure 6.16. The first order elliptical model gives us a scaled esti-

mate that is accurate to approximately 10 %. This would be a good starting point for a more

accurate local gravity model. It also gives us a collision avoidance ellipsoid, and well defines

the body frame for subsequent manuevers.

Figure 6.15 Surface Estimation using limited LIDAR Measurements.

6.7 Summary and Discussion

The present SPH hydrocode suggests that a dynamic model of a hypervelocity surface burst

yields results similar in spatial and temporal distribution at Earth impact to a static subsurface

explosion. This gives additional launch windows for mission design, limits the fuel needed

for a rendezvous burn, and avoids the need to bury the explosive payload. Additionally, the

dynamic model should better predict system behavior when addressing high velocity penetrator

architectures. The primary mechanism for this improvement is to use impactor momentum to

couple energy into the surface material. Since impact at over 6 km/s is not survivable by current

explosive system technology, this naive approach is not a viable option. However, the proposed

HAIV concept offers similar promise. This might give an option for realistically determining
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Figure 6.16 Convergence of Mass Estimate, Shape Parameters, and Orientation.

the limits of such a system for asteroid deflection missions. NEO orbital parameters such as

semimajor axis and eccentricity were not found to be important for these time scale, but it was

found that inclination was important in determining effectiveness of any given method.

All methods of disruption using a 100 kt nuclear energy source were quite effective for 100

m diameter targets for 15 days lead time, regardless of the orbit considered. The existing

ADRC models of a hypervelocity impact fragmentation of an NEO were extended and applied

to a 3D inhomogeneous asteroid model with randomly generated sections and generic material

parameters. It is clear from the discrepancy in dispersion speed for the 76 m asymmetric target

that the proposed HAIV concept is successful in reducing the mass remaining on impacting

trajectories over a simple contact burst. Future work should consider larger bodies, a range

of source energies, and lead times specific to the available mission time for a given orbit. At
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this time we can say conclusively that we believe a 100 m target can be safely disrupted on all

representative orbits with 15 days of dispersion time.

New HPC technology utilizing GPU acceleration has resulted in orders of magnitude im-

provement in computational ability. Speedup of the GPU accelerated model compared to serial

execution for the both target models has been demonstrated. While the 330,000 particles of

the penetrator target are limited mostly by communication bandwidth, the 3.1 million par-

ticles in the standoff model are limited by computational speed and memory bandwidth for

the threads on the GPU. A substantial speedup improvement, from 53x to 358x, is observed.

New high-throughput neighbor-finding methods were suggested, using the GPU acceleration

technology of the current simulation toolkit. The current simulation set develops a tensor re-

lationship for material characteristics and orientation. This allows for more realistic size and

shape generation for NEO fragments by treating damage as a local quantity (cracks) rather

than a distributed state variable. GPU acceleration of the 3D model is up to 200x on a single

workstation, continuing a trend of increasing computational complexity while also increasing

efficiency. This approach allows us to compute a range of values rather than monolithic single

simulations, and is incredibly important for the orbital analysis.

This shows single node computational performance on the same order as a moderate cluster.

The ability to run multiple cases to address statistical system behavior results in simulation

being integrated into overall mission design. Mission effectiveness can be estimated in advance

of a need for mission design, allowing new architectures and interchangeable components for

a universal deflection plan. This technology provides a useful reduction in time-to-solution

comparable to 30 similar CPU-only nodes (which would cost $4,000 each) in a $14,000 form

factor, showing a 8.6x improvement in cost-adjusted performance. Since a large amount of

data can be processed using GPU simulation, this work confirms that disruption at different

times along a given orbit can have a large effect on the resulting shape of debris. This allows

for a more clear set of objectives for mission design. Another new result is the availability

of representative 3D fragment distributions. This will improve the trajectory of the desired

hypervelocity intercept mission by allowing full degrees of freedom in choosing the approach

asymptote.
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